Background: Despite bronchoscopic lung volume reduction (BLVR) with valves is a minimally invasive treatment for emphysema, it can associate with some complications. We aimed at evaluating the rate and type of complications related to valve treatment and their impact on clinical outcomes. Methods: It is a retrospective multicenter study including all consecutive patients with severe heterogeneous emphysema undergoing BLVR with endobronchial valve treatment and developed any complications related to this procedure. The type of complication, the time of onset, the treatment required and the outcome were evaluated. Response to treatment was assessed according to the minimal clinically important difference (MCID) as follows: an improvement of ≥15% in forced expiratory volume in one second (FEV 1); of −8% in residual volume (RV); of ≥26 m in 6-minnute walking distance (6MWD); and of ≥4 points on the St. George's Respiratory Questionnaire (SGRQ). Target lobe volume reduction (TLVR) ≥350 mL was considered significant. Results: One hundred and seven out of 423 (25.3%) treated patients had complications related to valve treatment including pneumothorax (17.3%); pneumonia (1.7%), chronic obstructive pulmonary disease (COPD) exacerbation (0.9%), respiratory failure (1.4%), valve migration (2.1%), and hemoptysis (1.9%). In all cases complications resolved with appropriate treatment including removal of valves in 21/107 cases (19.6%). Patients with TLVR ≥350 mL (n=64) vs. those <350 mL (n=43) had a statistically significant higher improvement in FEV 1 (19.0%±3.9% vs. 3.0%±0.9%; P=0.0003); in RV (−10.0%±4.8% vs. −4.0%±2.9%; P=0.002); in 6MWD (33.0±19.0 vs. 12.0±6.3 metres; P=0.001); and in SGRQ (−15.0±2.9 vs. −8.0±3.5 points; P=0.01). Only patients with TLVR ≥350 mL met or exceeded the MCID cutoff criteria for FEV 1 (19.0%±3.9%), RV (−10.0%±4.8%), 6MWT (33.0±19.0 metres), and SGQR (−15.0±2.9 points). Five patients (1.2%) died during follow-up for causes not related to valves treatment neither to any of the complications described.
Background: Recent advances in bronchoscopic lung volume reduction offer new therapies for patients with emphysema and hyperinflation. Pulmonary lobe segmentation with quantification of lobar volumes and emphysema severity plays a pivotal role in treatment planning and post-interventional assessment. Computed tomography (CT)-derived lobar volumes could reflect more accurate regional changes in pulmonary function. Objectives: The aim of our study is to validate the reliability of an in-house CT Lung Segmentation software (LungSeg; the Hamlyn Centre, Imperial College London, UK) for lung lobar volume and emphysema quantification for chronic obstructive pulmonary disease (COPD) patients. Methods: A total of 108 CT scans from subjects who participated in an endobronchial coil treatment trial were included. Lobar volume and emphysema quantification were performed using the LungSeg and Syngo CT Pulmo 3D package (Siemens Healthcare GmbH, Germany). The inter-user reliability of the LungSeg program was investigated. Correlation coefficients and Bland-Altman analyses were used to quantify the inter-software variability. The agreement between CT volume analysis and plethysmography analysis was also examined. Results: The high intraclass correlation coefficients (mean ICC = 0.98) of the lobar volumes and emphysema indices measured by LungSeg suggest its excellent reproducibility. The LungSeg and Syngo program have good correlation (rho ≥0.94) and agreement for both lobar volume (median difference = 94 mL and LOAnp = 214.6 mL) and emphysema index (median difference ≤1.5% and LOAnp ≤2.03%) calculations. CT analysis provides a higher estimation of total lung capacity (TLCCT) than body plethysmography (TLCpleth), while there is a fair agreement on residual volume (RVCT) by LungSeg as compared with body plethysmography (RVpleth). Conclusions: CT-derived lobar volume and emphysema quantification using the LungSeg program is efficient and reliable in allowing lobar volume assessment. LungSeg has low inter-user variability and agrees better with plethysmography for COPD assessment in our study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.