Phosphorylation of histone H2AX (cH2AX) is known to be the earliest indicator of DNA double-strand breaks. Recently, it has been shown that mouse embryonic stem cells (mESCs) have very high basal levels of cH2AX, even when they have not been exposed to genotoxic agents. As the specialized role of high basal cH2AX levels in pluripotent stem cells is still debated, we investigated whether H2AX phosphorylation is important in maintaining selfrenewal of these cells. Here, we report that not only mESCs but also mouse-induced pluripotent stem cells (miPSCs), have high basal levels of cH2AX. We show that basal cH2AX levels decrease upon ESC and iPSC differentiation and increase when the cells are treated with selfrenewal-enhancing small molecules. We observe that selfrenewal activity is highly compromised in H2AX2/2 cells and that it can be restored in these cells through reconstitution with a wild-type, but not a phospho-mutated, H2AX construct. Taken together, our findings suggest a novel function of H2AX that expands the knowledge of this histone variant beyond its role in DNA damage and into a new specialized biological function in mouse pluripotent stem cells.
Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis.
Highly bright and photostable cyanine dye-doped silica nanoparticles, IRIS Dots, are developed, which can efficiently label human mesenchymal stem cells (hMSCs). The application procedure used to label hMSCs is fast (2 h), the concentration of IRIS Dots for efficient labeling is low (20 μg mL(-1) ), and the labeled cells can be visualized by flow cytometry, confocal microscopy, and transmission electron microscopy. Labeled hMSCs are unaffected in their viability and proliferation, as well as stemness surface marker expression and differentiation capability into osteocytes. Moreover, this is the first report that shows nonfunctionalized IRIS Dots can discriminate between live and early-stage apoptotic stem cells (both mesenchymal and embryonic) through a distinct external cell surface distribution. On the basis of biocompatibility, efficient labeling, and apoptotic discrimination potential, it is suggested that IRIS Dots can serve as a promising stem cell tracking agent.
Summary The role of chromatin structure in lineage commitment of multipotent hematopoietic progenitors (HPCs) is presently unclear. We show here that CD34+ HPCs possess a post-replicative chromatin globally devoid of the repressive histone mark H3K27me3. This H3K27-unmodified chromatin is required for recruitment of lineage-determining transcription factors (TFs) C/EBPα, PU.1 and GATA-1 to DNA just after DNA replication upon cytokine-induced myeloid or erythroid commitment. Blocking DNA replication or increasing H3K27me3 levels prevents recruitment of these TFs to DNA and suppresses cytokine-induced erythroid or myeloid differentiation. However, H3K27me3 is rapidly associated with nascent DNA in more primitive human and murine HPCs. Treatment of these cells with instructive cytokines leads to a significant delay in accumulation of H3K27me3 in nascent chromatin due to activity of the H3K27me3 demethylase UTX. Thus, HPCs utilize special mechanisms of chromatin modification for recruitment of specific TFs to DNA during early stages of lineage specification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.