The estimation of the driving force for photoinduced charge-transfer processes, using the Rehm-Weller equation, requires the employment of redox and spectroscopic quantities describing the participating electron donor and acceptor. Although the spectroscopic data are usually obtained from diluted solutions, the redox potentials are most frequently obtained from electrochemical measurements conducted in concentrated electrolyte solutions. To correct for the differences in the media, in which the various types of measurements are conducted, a term, based on the Born equation for solvation energy of ions, is introduced in the Rehm-Weller equation. The Born correction term, however, requires a prior knowledge of the dielectric constants of the electrolyte solutions used for the redox measurements. Because of limited information for such dielectrics, the values for the dielectric constants of electrolyte solutions are approximated to the values of the dielectric constants of the corresponding neat solvents. We examined the validity of this approximation. Using cyclic voltammetry, we recorded the first one-electron oxidation potential of ferrocene for three different solvents in the presence of 1-500 mM supporting electrolyte. The dielectric constants for some of the electrolyte solutions were extracted from fluorescence measurements of a dimethylaminonaphthalimide chromophore that exhibits pronounced solvatochromism. The dielectric constants of the concentrated electrolyte solutions correlated well with the corresponding oxidation potentials. The dependence of the oxidation potential of ferrocene on the electrolyte concentration for different solvents revealed that the abovementioned approximation in the Born correction term indeed introduces a significant error in the estimation of the charge-transfer driving force from redox data collected using relatively nonpolar solvents.
What is the best approach for estimating standard electrochemical potentials, E (0) , from voltammograms that exhibit chemical irreversibility? The lifetimes of the oxidized or reduced forms of the majority of known redox species are considerably shorter than the voltammetry acquisition times, resulting in irreversibility and making the answer to this question of outmost importance. Halfwave potentials, E (1/2) , provide the best experimentally obtainable representation of E (0) . Due to irreversible oxidation or reduction, however, the lack of cathodic or anodic peaks in cyclic voltammograms renders E (1/2) unattainable. Therefore, we evaluate how closely alternative potentials, readily obtainable from irreversible voltammograms, estimate E (0) . Our analysis reveals that, when E (1/2) is not available, inflection-point potentials provide the best characterization of redox couples. While peak potentials are the most extensively used descriptor for irreversible systems, they deviate significantly from E (0) , especially at high scan rates. Even for partially irreversible systems, when the cathodic peak is not as pronounced as the anodic one, the half-wave potentials still provide the best estimates for E (0) . The importance of these findings extends beyond the realm of electrochemistry and impacts fields, such as materials engineering, photonics, cell biology, solar energy engineering and neuroscience, where cyclic voltammetry is a key tool.
Herein we report the first example of nanocrystal (NC) sensitized triplet–triplet annihilation based photon upconversion from the visible to ultraviolet (vis-to-UV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.