There has been great progress in ocular gene therapy, but delivery of viral vectors to the retinal pigmented epithelium (RPE) and retina can be challenging. Subretinal injection, the preferred route of delivery for most applications, requires a surgical procedure that has risks. Herein we report a novel gene therapy delivery approach, suprachoroidal injection of AAV8 vectors, which is less invasive and could be done in an outpatient setting. Two weeks after suprachoroidal injection of AAV8.GFP in rats, GFP fluorescence covered 18.9% of RPE flat mounts and extended entirely around sagittal and transverse sections in RPE and photoreceptors. After 2 suprachoroidal injections of AAV8.GFP, GFP fluorescence covered 30.5% of RPE flat mounts. Similarly, widespread expression of GFP occurred in nonhuman primate and pig eyes after suprachoroidal injection of AAV8. GFP. Compared with subretinal injection in rats of RGX-314, an AAV8 vector expressing an anti-VEGF Fab, suprachoroidal injection of the same dose of RGX-314 resulted in similar expression of anti-VEGF Fab and similar suppression of VEGFinduced vascular leakage. Suprachoroidal AAV8 vector injection provides a noninvasive outpatient procedure to obtain widespread transgene expression in retina and RPE.
Müller glial cells (MGCs) are known to participate actively in retinal development and to contribute to homoeostasis through many intracellular mechanisms. As there are no homologous cells in other neuronal tissues, it is certain that retinal health depends on MGCs. These macroglial cells are located at the centre of the columnar subunit and have a great ability to interact with neurons, astrocytes, microglia and endothelial cells in order to modulate different events. Several investigations have focused their attention on the role of MGCs in diabetic retinopathy, a progressive pathology where several insults coexist. As expected, data suggest that MGCs display different responses according to the severity of the stimulus, and therefore trigger distinct events throughout the course of the disease. Here, we describe physiological functions of MGCs and their participation in inflammation, gliosis, synthesis and secretion of trophic and antioxidant factors in the diabetic retina. We invite the reader to consider the protective/deleterious role of MGCs in the early and late stages of the disease. In the light of the results, we open up the discussion around and ask the question: Is it possible that the modulation of a single cell type could improve or even re-establish retinal function after an injury?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.