We suggest that white matter abnormalities in type IIb FCD are due to defects of the myelination processes and maturation, impaired by the presence of balloon cells. To reveal the presence and the border of type II cortical dysplasia on MRI, a quantitative ROI-based analysis (coefficient of variation) is also proposed.
Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/−) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2−/− mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration.
In all patients, multifocal myoclonic jerks and seizures were a key feature, but myoclonic seizures were an early and prominent sign in the teenage/adult form only. Conversely, the childhood-onset form was characterized by initial and severe cognitive impairment coupled with electroretinogram and EEG attenuation. Cortical hyperexcitability, shown by the PPR and enlarged somatosensory evoked potentials, was a universal feature.
Summary
We detail the phenotype of a novel form of neuronal ceroid lipofuscinosis due to a homozygous progranulin gene mutation (c.813_816del; CLN11 MIM #614706). The symptoms appeared in two young adult siblings, and included progressive retinopathy, recurrent generalized seizures, moderate ataxia, and subtle cognitive dysfunction. Long‐lasting episodes of palinopsia were a recurring symptom and associated with polyphasic visual‐evoked potential waveform that suggested hyperexcitability of the occipital cortex. Electroencephalography showed rare spike‐wave paroxysms, and magnetic resonance imaging revealed selective cerebellar atrophy. Skin biopsy revealed fingerprint storage and the absence of progranulin protein. Electron microscopy of peripheral blood leukocytes showed fingerprint profiles in 1/100 lymphocytes. These findings define a novel phenotype and provide clues for better understanding of progranulin function.
A PowerPoint slide summarizing this article is available for download in the Supporting Information section http://onlinelibrary.wiley.com/doi/10.1111/epi.12632/supinfo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.