Both underweight and obesity have been associated with increased mortality1,2. Underweight, defined as body mass index (BMI) ≤ 18,5 kg/m2 in adults 3 and ≤ −2 standard deviations (SD) in children4,5, is the main sign of a series of heterogeneous clinical conditions such as failure to thrive (FTT) 6–8, feeding and eating disorder and/or anorexia nervosa9,10. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported 11, 12. We previously demonstrated that hemizygosity of a ~600 kb region on the short arm of chromosome 16 (chr16:29.5–30.1Mb), causes a highly-penetrant form of obesity often associated with hyperphagia and intellectual disabilities13. Here we show that the corresponding reciprocal duplication is associated with underweight. We identified 138 (132 novel cases) duplication carriers (108 unrelated carriers) from over 95,000 individuals clinically-referred for developmental or intellectual disabilities (DD/ID), psychiatric disorders or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight (mean Z-score −0.6; p=4.4×10−4) and BMI (mean Z-score −0.5; p=2.0×10−3). In particular, half of the boys younger than 5 years are underweight with a probable diagnosis of FTT, while adult duplication carriers have an 8.7-fold (p=5.9×10−11; CI_95=[4.5–16.6]) increased risk of being clinically underweight. We observe a significant trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive feeding behaviours and a significant reduction in head circumference (mean Z-score −0.9; p=7.8×10−6). Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus, correlating with changes in transcript levels for genes mapping within the duplication but not within flanking regions. The reciprocal impact of these 16p11.2 copy number variants suggests that severe obesity and being underweight can have mirror etiologies, possibly through contrasting effects on eating behaviour.
Weakly to moderately recurrent CNVs (transmitted or occurring de novo) seem to be causative or contributory factors for these diseases. Most of these CNVs (which contain genes involved in neurotransmission or in synapse formation and maintenance) are present in the 3 pathologic conditions (schizophrenia, autism, and mental retardation), supporting the existence of shared biologic pathways in these neurodevelopmental disorders.
This study shows a considerably high cumulative risk of cancer for patients with PHTS, mainly in women without clear genotype-phenotype correlation for this cancer risk. New recommendations for the management of PHTS patients are proposed.
To optimize the molecular diagnosis of hereditary breast and ovarian cancer (HBOC), we developed a next-generation sequencing (NGS)-based screening based on the capture of a panel of genes involved, or suspected to be involved in HBOC, on pooling of indexed DNA and on paired-end sequencing in an Illumina GAIIx platform, followed by confirmation by Sanger sequencing or MLPA/QMPSF. The bioinformatic pipeline included CASAVA, NextGENe, CNVseq and Alamut-HT. We validated this procedure by the analysis of 59 patients' DNAs harbouring SNVs, indels or large genomic rearrangements of BRCA1 or BRCA2. We also conducted a blind study in 168 patients comparing NGS versus Sanger sequencing or MLPA analyses of BRCA1 and BRCA2. All mutations detected by conventional procedures were detected by NGS. We then screened, using three different versions of the capture set, a large series of 708 consecutive patients. We detected in these patients 69 germline deleterious alterations within BRCA1 and BRCA2, and 4 TP53 mutations in 468 patients also tested for this gene. We also found 36 variations inducing either a premature codon stop or a splicing defect among other genes: 5/708 in CHEK2, 3/708 in RAD51C, 1/708 in RAD50, 7/708 in PALB2, 3/708 in MRE11A, 5/708 in ATM, 3/708 in NBS1, 1/708 in CDH1, 3/468 in MSH2, 2/468 in PMS2, 1/708 in BARD1, 1/468 in PMS1 and 1/468 in MLH3. These results demonstrate the efficiency of NGS in performing molecular diagnosis of HBOC. Detection of mutations within other genes than BRCA1 and BRCA2 highlights the genetic heterogeneity of HBOC. In BRCA1 and BRCA2 mutation carriers, the cumulative risk of breast cancer at 70 years has been estimated to 65 and 45%, respectively, and the risk of ovarian cancer to 39 and 10%, respectively. 3 The identification of a deleterious BRCA1/BRCA2 mutation within a family is crucial for the medical follow-up, as mutation carriers should be offered annual MRI or, alternatively, prophylactic mastectomy and prophylactic salpingooophorectomy. Furthermore, in a breast cancer patient, the detection of a germline BRCA1 or BRCA2 mutation may have important therapeutic consequences: complete mastectomy instead of partial mastectomy and, in the future, the prescription of specific targeted therapies, such as PARP inhibitors. 4,5 Considering the medical consequences of the identification of a germline BRCA1 or BRCA2 mutation and the frequency of mutation carriers, which has
Microdeletions of the 22q11 region, responsible for the velo-cardio-facial syndrome (VCFS), are associated with an increased risk for psychosis and mental retardation. Recently, it has been shown in a hyperprolinemic mouse model that an interaction between two genes localized in the hemideleted region, proline dehydrogenase (PRODH) and catechol-o-methyl-transferase (COMT), could be involved in this phenotype. Here, we further characterize in eight children the molecular basis of type I hyperprolinemia (HPI), a recessive disorder resulting from reduced activity of proline dehydrogenase (POX). We show that these patients present with mental retardation, epilepsy and, in some cases, psychiatric features. We next report that, among 92 adult or adolescent VCFS subjects, a subset of patients with severe hyperprolinemia has a phenotype distinguishable from that of other VCFS patients and reminiscent of HPI. Forward stepwise multiple regression analysis selected hyperprolinemia, psychosis and COMT genotype as independent variables influencing IQ in the whole VCFS sample. An inverse correlation between plasma proline level and IQ was found. In addition, as predicted from the mouse model, hyperprolinemic VCFS subjects bearing the Met-COMT low activity allele are at risk for psychosis (OR = 2.8, 95% CI = 1.04-7.4). Finally, from the extensive analysis of the PRODH gene coding sequence variations, it is predicted that POX residual activity in the 0-30% range results into HPI, whereas residual activity in the 30-50% range is associated either with normal plasma proline levels or with mild-to-moderate hyperprolinemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.