The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria.
In rod photoreceptors, arrestin localizes to the outer segment (OS) in the light and to the inner segment (IS) in the dark. Here, we demonstrate that redistribution of arrestin between these compartments can proceed in ATP-depleted photoreceptors. Translocation of transducin from the IS to the OS also does not require energy, but depletion of ATP or GTP inhibits its reverse movement. A sustained presence of activated rhodopsin is required for sequestering arrestin in the OS, and the rate of arrestin relocalization to the OS is determined by the amount and the phosphorylation status of photolyzed rhodopsin. Interaction of arrestin with microtubules is increased in the dark. Mutations that enhance arrestin-microtubule binding attenuate arrestin translocation to the OS. These results indicate that the distribution of arrestin in rods is controlled by its dynamic interactions with rhodopsin in the OS and microtubules in the IS and that its movement occurs by simple diffusion.
In the CNS, the transcription factor NF-κB is a key regulator of inflammation and secondary injury processes. Following trauma or disease, the expression of NF-κB-dependent genes is activated, leading to both protective and detrimental effects. In this study, we show that transgenic inactivation of astroglial NF-κB (glial fibrillary acidic protein-IκBα-dominant-negative mice) resulted in reduced disease severity and improved functional recovery following experimental autoimmune encephalomyelitis. At the chronic stage of the disease, transgenic mice exhibited an overall higher presence of leukocytes in spinal cord and brain, and a markedly higher percentage of CD8+CD122+ T regulatory cells compared with wild type, which correlated with the timing of clinical recovery. We also observed that expression of proinflammatory genes in both spinal cord and cerebellum was delayed and reduced, whereas the loss of neuronal-specific molecules essential for synaptic transmission was limited compared with wild-type mice. Furthermore, death of retinal ganglion cells in affected retinas was almost abolished, suggesting the activation of neuro-protective mechanisms. Our data indicate that inhibiting NF-κB in astrocytes results in neuroprotective effects following experimental autoimmune encephalomyelitis, directly implicating astrocytes in the pathophysiology of this disease.
PurposeTo characterize the ocular surface microbiome of healthy volunteers using a combination of microbial culture and high-throughput DNA sequencing techniques.MethodsConjunctival swab samples from 107 healthy volunteers were analyzed by bacterial culture, 16S rDNA gene deep sequencing (n = 89), and biome representational in silico karyotyping (BRiSK; n = 80). Swab samples of the facial skin (n = 42), buccal mucosa (n = 50), and environmental controls (n = 27) were processed in parallel. 16S rDNA gene quantitative PCR was used to calculate the bacterial load in each site. Bacteria were characterized by site using principal coordinate analysis of metagenomics data. BRiSK data were analyzed for presence of fungi and viruses.ResultsCorynebacteria, Propionibacteria, and coagulase-negative Staphylococci were the predominant organisms identified by all three techniques. Quantitative 16S PCR demonstrated approximately 0.1 bacterial 16S rDNA/human actin copy on the ocular surface compared with greater than 10 16S rDNA/human actin copy for facial skin or the buccal mucosa. The conjunctival bacterial community structure is distinct compared with the facial skin (R = 0.474, analysis of similarities P = 0.0001), the buccal mucosa (R = 0.893, P = 0.0001), and environmental control samples (R = 0.536, P = 0.0001). 16S metagenomics revealed substantially more bacterial diversity on the ocular surface than other techniques, which appears to be artifactual. BRiSK revealed presence of torque teno virus (TTV) on the healthy ocular surface, which was confirmed by direct PCR to be present in 65% of all conjunctiva samples tested.ConclusionsRelative to adjacent skin or other mucosa, healthy ocular surface microbiome is paucibacterial. Its flora are distinct from adjacent skin. Torque teno virus is a frequent constituent of the ocular surface microbiome. (ClinicalTrials.gov number, NCT02298881.)
SUMMARY Targeted mutagenesis in mice is a powerful tool for functional analysis of genes. However, genetic variation between embryonic stem cells (ESCs) used for targeting (previously almost exclusively 129-derived) and recipient strains (often C57BL/6J) typically results in congenic mice in which the targeted gene is flanked by ESC-derived passenger DNA potentially containing mutations. Comparative genomic analysis of 129 and C57BL/6J mouse strains revealed indels and single nucleotide polymorphisms resulting in alternative or aberrant amino acid sequences in 1,084 genes in the 129-strain genome. Annotating these passenger mutations to the reported genetically modified congenic mice that were generated using 129-strain ESCs revealed that nearly all these mice possess multiple passenger mutations potentially influencing the phenotypic outcome. We illustrated this phenotypic interference of 129-derived passenger mutations with several case studies and developed a Me-PaMuFind-It web tool to estimate the number and possible effect of passenger mutations in transgenic mice of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.