Cognitive decline in Alzheimer's disease (AD) involves pathological accumulation of synaptotoxic amyloid- (A) oligomers and hyperphosphorylated tau. Because recent evidence indicates that glycogen synthase kinase 3 (GSK3) activity regulates these neurotoxic pathways, we developed an AD therapeutic strategy to target GSK3. The strategy involves the use of copper-bis(thiosemicarbazonoto) complexes to increase intracellular copper bioavailability and inhibit GSK3 through activation of an Akt signaling pathway. Our lead compound Cu II (gtsm) significantly inhibited GSK3 in the brains of APP/PS1 transgenic AD model mice. Cu II (gtsm) also decreased the abundance of A trimers and phosphorylated tau, and restored performance of AD mice in the Y-maze test to levels expected for cognitively normal animals. Improvement in the Y-maze correlated directly with decreased A trimer levels. This study demonstrates that increasing intracellular copper bioavailability can restore cognitive function by inhibiting the accumulation of neurotoxic A trimers and phosphorylated tau.Alzheimer's disease ͉ bioinorganic chemistry ͉ glycogen synthase kinase ͉ therapeutic ͉ animal model A lzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by impaired cognitive performance and pathologically by cerebral deposition of extracellular amyloid plaques and intracellular neurofibrillary tangles. Amyloid plaques in AD contain aggregated forms of the 39-to 43-aa amyloid- peptide (A) and A is strongly implicated as a causative agent responsible for cognitive failure in AD. A diverse range of mechanisms for A toxicity has been reported (1). A is produced from the amyloid precursor protein (APP) (2-5) and readily aggregates to form insoluble, high-molecular-mass amyloid structures. Intermediates on the A aggregation pathway, primarily low-molecular-mass oligomers such as dimers and trimers, exhibit the greatest neurotoxicity (6-8). In addition to A oligomers, aberrantly phosphor ylated microtubuleassociated protein tau is also associated with cognitive decline in AD (9). Intracellular neurofibrillary tangles in the AD brain contain hyperphosphorylated tau, and A induced cognitive deficits characteristic of AD transgenic mice are attenuated by decreasing levels of endogenous tau (10).It is now widely recognized that a truly effective therapeutic compound for treating AD needs to attenuate both the A-and tau-mediated pathologies. Recent positive outcomes for PBT2 in clinical and preclinical trials are therefore pertinent. Lannfelt et al.(11) demonstrated in phase IIa clinical trials that PBT2 lowers plasma A levels and attenuates cognitive decline, and Adlard et al. (12) have shown that PBT2 decreases interstitial A and phosphorylated tau in the brains of AD model mice. PBT2 is a secondgeneration 8-OH quinoline, which, unlike its predecessor clioquinol, lacks iodine and was selected for clinical development because of its easier chemical synthesis, higher solubility, and increased blood-brain barrier perme...
Brainwash! A platinum complex (see scheme) was developed that could be administered orally and reduce the amyloid burden in the brains of transgenic mouse models suffering from Alzheimer's disease. Analyses of brain tissues showed that treatment with the Pt compound led to a 26 % decrease in the number of amyloid β‐peptide plaques.
Four types of neurons have previously been identified by neurochemical markers in the submucosal ganglia of the guinea-pig small intestine, and functional roles have been ascribed to each type. However, morphological differences among the classes have not been determined, and there is only partial information about their projections within the submucosa. In the present work, we used intracellular microelectrodes to fill neurons of each type with biocytin, which was then converted to a permanent dye, so that the shapes of the neurons could be determined and their projections within the submucosa could be followed. Cell bodies of noncholinergic secretomotor/ vasodilator neurons had Dogiel type I morphology. These neurons, which are vasoactive intestinal peptide immunoreactive, had single axons that ran through many ganglia without providing terminals around other neurons. Cholinergic secretomotor neurons with neuropeptide Y immunoreactivity had Stach type IV morphology, and cholinergic secretomotor/vasodilator neurons had stellate cell bodies. The axons of these two types ran short distances in the plexus and did not innervate other submucosal neurons. Neurons of the fourth type, intrinsic primary afferent neurons, had cell bodies with Dogiel type II morphology and their processes supplied networks of varicose processes around other nerve cells. It is concluded that each functionally defined type of submucosal neuron has a characteristic morphology and that intrinsic primary afferent neurons synapse with secretomotor neurons to form monosynaptic secretomotor reflex circuits. Anat Rec Part A 272A: 475-483, 2003.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.