[1] Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas-particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans-2,4-hexadienal, glyoxal, methylglyoxal, 2,3-butanedione, 2,4-pentanedione, glutaraldehyde, and hydroxyacetone) onto inorganic aerosol. Gas-phase organic compounds and aqueous seed particles (ammonium sulfate or mixed ammonium sulfate/sulfuric acid) are introduced into the chamber, and particle growth and composition are monitored using a differential mobility analyzer and an Aerodyne Aerosol Mass Spectrometer. No growth is observed for most carbonyls studied, even at high concentrations (500 ppb to 5 ppm), in contrast with the results from previous studies. The single exception is glyoxal (CHOCHO), which partitions into the aqueous aerosol much more efficiently than its Henry's law constant would predict. No major enhancement in particle growth is observed for the acidic seed, suggesting that the large glyoxal uptake is not a result of particle acidity but rather of ionic strength of the seed. This increased partitioning into the particle phase still cannot explain the high levels of glyoxal measured in ambient aerosol, indicating that additional (possibly irreversible) pathways of glyoxal uptake may be important in the atmosphere.
[1] The photooxidation of isoprene, eight monoterpenes, three oxygenated monoterpenes, and four sesquiterpenes were conducted individually at the Caltech Indoor Chamber Facility under atmospherically relevant HC:NO x ratios to monitor the time evolution and yields of SOA and gas-phase oxidation products using PTR-MS. Several oxidation products were calibrated in the PTR-MS, including formaldehyde, acetaldehyde, formic acid, acetone, acetic acid, nopinone, methacrolein + methyl vinyl ketone; other oxidation products were inferred from known fragmentation patterns, such as pinonaldehyde; and other products were identified according to their mass to charge (m/z) ratio. Numerous unidentified products were formed, and the evolution of first-and second-generation products was clearly observed. SOA yields from the different terpenes ranged from 1 to 68%, and the total gas-plus particle-phase products accounted for $50-100% of the reacted carbon. The carbon mass balance was poorest for the sesquiterpenes, suggesting that the observed products were underestimated or that additional products were formed but not detected by PTR-MS. Several second-generation products from isoprene photooxidation, including m/z 113, and ions corresponding to glycolaldehyde, hydroxyacetone, methylglyoxal, and hydroxycarbonyls, were detected. The detailed time series and relative yields of identified and unidentified products aid in elucidating reaction pathways and structures for the unidentified products. Many of the unidentified products from these experiments were also observed within and above the canopy of a Ponderosa pine plantation, confirming that many products of terpene oxidation can be detected in ambient air using PTR-MS, and are indicative of concurrent SOA formation.
Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase concentrations (monitored by a Proton Transfer Reaction Mass Spectrometer, PTR-MS), we study the general mechanisms of SOA formation. Aerosol growth data are presented in terms of a “growth curve”, a plot of aerosol mass formed versus the amount of hydrocarbon reacted. From the shapes of the growth curves, it is found that all the hydrocarbons studied can be classified into two groups based entirely on the number of double bonds of the hydrocarbon, regardless of the reaction systems (ozonolysis or photooxidation) and the types of hydrocarbons studied: compounds with only one double bond and compounds with more than one double bond. For compounds with only one double bond, the first oxidation step is rate-limiting, and aerosols are formed mainly from low volatility first-generation oxidation products; whereas for compounds with more than one double bond, the second oxidation step may also be rate-limiting and second-generation products contribute substantially to SOA growth. This behavior is characterized by a vertical section in the growth curve, in which continued aerosol growth is observed even after all the parent hydrocarbon is consumed.
A series of controlled laboratory experiments are carried out in dual Teflon chambers to examine the presence of oligomers in secondary organic aerosols (SOA) from hydrocarbon ozonolysis as well as to explore the effect of particle phase acidity on SOA formation. In all seven hydrocarbon systems studied (i.e., alpha-pinene, cyclohexene, 1-methyl cyclopentene, cycloheptene, 1-methyl cyclohexene, cyclooctene, and terpinolene), oligomers with MW from 250 to 1600 are present in the SOA formed, both in the absence and presence of seed particles and regardless of the seed particle acidity. These oligomers are comparable to, and in some cases, exceed the low molecular weight species (MW < 250) in ion intensities in the ion trap mass spectra, suggesting they may comprise a substantial fraction of the total aerosol mass. It is possible that oligomers are widely present in atmospheric organic aerosols, formed through acid- or base-catalyzed heterogeneous reactions. In addition, as the seed particle acidity increases, larger oligomers are formed more abundantly in the SOA; consequently, the overall SOA yield also increases. This explicit effect of particle phase acidity on the composition and yield of SOA may have important climatic consequences and need to be considered in relevant models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.