A general framework for processing high and veryhigh resolution imagery in support of a Global Human Settlement Layer (GHSL) is presented together with a discussion on the results of the first operational test of the production workflow. The test involved the mapping of 24.3 million km² of the Earth surface spread in four continents, corresponding to an estimated population of 1.3 billion people in 2010. The resolution of the input image data ranges from 0.5 to 10 meters, collected by a heterogeneous set of platforms including satellite SPOT (2 and 5), CBERS 2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye 1, QuickBird 2, Ikonos 2, and airborne sensors. Several imaging modes were tested including panchromatic, multispectral and pan-sharpened images. A new fully automatic image information extraction, generalization and mosaic workflow is presented that is based on multiscale textural and morphological image features extraction. New image feature compression and optimization are introduced, together with new learning and classification techniques allowing for the processing of HR/VHR image data using low-resolution thematic layers as reference. A new systematic approach for quality control and validation allowing global spatial and thematic consistency checking is proposed and applied. The quality of the results are discussed by sensor, band, resolution, and eco-regions. Critical points, lessons learned and next steps are highlighted.Index Terms-Built-up density, CSL, global human settlement layer, linear regression, PANTEX, urban limits.
To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named ‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.
Abstract:Monitoring of the human-induced changes and the availability of reliable and methodologically consistent urban area maps are essential to support sustainable urban development on a global scale. The Global Human Settlement Layer (GHSL) is a project funded by the European Commission, Joint Research Centre, which aims at providing scientific methods and systems for reliable and automatic mapping of built-up areas from remote sensing data. In the frame of the GHSL, the opportunities offered by the recent availability of Sentinel-2 data are being explored using a novel image classification method, called Symbolic Machine Learning (SML), for detailed urban land cover mapping. In this paper, a preliminary test was implemented with the purpose of: (i) assessing the applicability of the SML classifier on Sentinel-2 imagery; (ii) evaluating the complementarity of Sentinel-1 and Sentinel-2; and (iii) understanding the added-value of Sentinel-2 with respect to Landsat for improving global high-resolution human settlement mapping. The overall objective is to explore areas of improvement, including the possibility of synergistic use of the different sensors. The results showed that noticeable improvement of the quality of the classification could be gained from the increased spatial detail and from the thematic contents of Sentinel-2 compared to the Landsat derived product as well as from the complementarity between Sentinel-1 and Sentinel-2 images.
This paper presents the analysis of Earth Observation data records collected between 1975 and 2014 for assessing the extent and temporal evolution of the built-up surface in the frame of the Global Human Settlement Layer project. The scale of the information produced by the study enables the assessment of the whole continuum of human settlements from rural hamlets to megacities. The study applies enhanced processing methods as compared to the first production of the GHSL baseline data. The major improvements include the use of a more refined learning set on built-up areas derived from Sentinel-1 data which allowed testing the added-value of incremental learning in big data analytics. Herein, the new features of the GHSL built-up grids and the methods are described and compared with the previous ones using a reference set of building footprints for 277 areas of interest. The results show a gradual improvement in the accuracy measures with a gain of 3.6% in the balanced accuracy, between the first production of the GHSL baseline and the latest GHSL multitemporal built-up grids. A validation of the multitemporal component is also conducted at the global scale establishing the reliability of the built-up layer across time.
Continuous global-scale mapping of human settlements in the service of international agreements calls for massive volume of multi-source, multi-temporal, and multi-scale earth observation data. In this paper, the latest developments in terms of processing big earth observation data for the purpose of improving the Global Human Settlement Layer (GHSL) data are presented. Two experiments with Sentinel-1 and Landsat data collections were run leveraging on the Joint Research Centre Earth Observation Data and Processing Platform. A comparative analysis of the results of built-up areas extraction from different remote sensing data and processing workflows shows how the information production supported by data-intensive computing infrastructure for optimization and multiple testing can improve the output information reliability and consistency within the GHSL scope. The paper presents the processing workflows and the results of the two main experiments, giving insights into the enhanced mapping capabilities gained by analyzing Sentinel-1 and Landsat data-sets, and the lessons learnt in terms of handling and processing big earth observation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.