of the original manuscript:Hedayati, M.K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V.S.K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M.: Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic MetamaterialsIn: Advanced Materials (2011) Submitted to 2 ((During the course of the last decade, trends to achieve perfect absorbers increased tremendously due to the huge interest in development of the materials for harvesting solar energy. However up to date all of the applied methods (perforated metallic films, [1][2][3] grating structured systems [4][5][6][7] , and metamaterials [8][9][10][11][12][13][14] ) are costly and suffer from a lack of flexibility.Furthermore their absorbance is limited to a narrow spectral range which makes their application for a broad range of frequencies impossible.Here we demonstrate design, fabrication and characterization of a perfect plasmonic absorber in a stack of metal and nanocomposite showing almost 100% absorbance spanning a broad range of frequencies from ultraviolet to the near infrared. The fabrication technique of our metamaterial is pretty simple, cost effective and compatible with current industrial methods of MEMS which make our proposed system an outstanding candidate for high efficiency absorber materials.Thick metallic film are known as an excellent mirror but when they are structured, the reflectance fades away because the light gets absorbed by the excitation of the conduction electrons by electromagnetic waves which is generally known as plasmon resonance.[1] This concept has been used in the last few decades to realize highly absorbing systems in diverse areas of the electromagnetic spectrum but these works were either successful only for a very narrow range of frequencies [7,[14][15][16] or the absorbance was distant from that of blackbody materials [11] .Not only the metallic film supports plasmon resonances but also the metallic nanoparticles show high absorption due to its localized particle plasmon resonance (Mie resonance) [17][18] Indeed, the resonance of these particles embedded in different matrices has been extensively studied within the last decade and it is well known that the resonance bandwidth depends on the size, shape, density and distribution of the nanoparticles. [17][18] Indeed, a highly dense nanocomposite gives rise to a very broad-band absorption due to the excitation of the localized plasmon resonance of the nanoparticles by visible light. [19] In contrast to the Submitted to 3 expectation for the absorption behavior of a metal/polymer nanocomposite, we have recently shown that nanocomposites with low filling factor in a proximity to a thin metallic film can even enhance the optical transmission of the system due to the plasmonic coupling of the film and the nanoparticles which mainly result in a reflection/scattering reduction of the system by dipole/image interaction. [20] However, rising the distance between the metallic film and the nanoparticles by adding a space...
Here we report for the first time the development of a Mg rechargeable battery using a graphene-sulfur nanocomposite as the cathode, a Mg-carbon composite as the anode and a non-nucleophilic Mg based complex in tetraglyme solvent as the electrolyte. The graphene-sulfur nanocomposites are prepared through a new pathway by the combination of thermal and chemical precipitation methods. The Mg/S cell delivers a higher reversible capacity (448 mA h g(-1)), a longer cyclability (236 mA h g(-1) at the end of the 50(th) cycle) and a better rate capability than previously described cells. The dissolution of Mg polysulfides to the anode side was studied by X-ray photoelectron spectroscopy. The use of a graphene-sulfur composite cathode electrode, with the properties of a high surface area, a porous morphology, a very good electronic conductivity and the presence of oxygen functional groups, along with a non-nucleophilic Mg electrolyte gives an improved battery performance.
Multicomponent rare earth oxide (REO) nanocrystalline powders containing up to seven equiatomic rare earth elements were successfully synthesized in a single-phase CaF 2-type (Fm-3 m) structure. The addition of more than six elements resulted in the formation of a secondary phase. Annealing at 1000°C for 1 h led to the formation of a single-phase (Ia-3) even in the 7-component system. In the absence of cerium (Ce 4+), secondary phases were observed irrespective of the number of cations or the extent of thermal treatment indicating that cerium cations played a crucial role in stabilizing the multicomponent REOs into a phase pure structure. IMPACT STATEMENT Multicomponent equiatomic rare earth oxides pioneer a new group of materials that crystallize into a single-phase structure with the dominant role of a single element instead of entropy.
In the search for novel battery systems with high energy density and low cost, fluoride ion batteries have recently emerged as a further option to store electricity with very high volumetric energy densities. Among metal fluorides, CuF 2 is an intriguing candidate for cathode materials due to its high specific capacity and high theoretical conversion potential. Here, the reversibility of CuF 2 as a cathode material in the fluoride ion battery system employing a high F − conducting tysonite-type La 0.9 Ba 0.1 F 2.9 as an electrolyte and a metallic La as an anode is investigated. For the first time, the reversible conversion mechanism of CuF 2 with the corresponding variation in fluorine content is reported on the basis of X-ray photoelectron spectroscopy measurements and cathode/electrolyte interfacial studies by transmission electron microscopy. Investigation of the anode/electrolyte interface reveals structural variation upon cycling with the formation of intermediate layers consisting of i) hexagonal LaF 3 and monoclinic La 2 O 3 phases in the pristine interface;ii) two main phases of distorted orthorhombic LaF 3 and monoclinic La 2 O 3 after discharging; and iii) a tetragonal lanthanum oxyfluoride (LaOF) phase after charging. The fading mechanism of the cell capacity upon cycling can be explained by Cu diffusion into the electrolyte and side reactions due to the formation of the LaOF compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.