During rat cortical development, when neurons migrate from the ventricular zone to the cortical plate, GABA localizes within the target destinations of migratory neurons. At this time, cells in germinal zones and along migratory pathways express GABA receptor subunit transcripts, implying that in vivo, GABA may be a chemoattractant. We used an in vitro strategy to study putative chemotropic effects of GABA on embryonic rat cortical cells. GABA stimulated neuronal migration in vitro at embryonic day 15 (E15). From E16 onward, two concentration ranges (fM and microM) induced motility. Femtomolar GABA primarily stimulated chemotaxis (migration along a chemical gradient), whereas micromolar GABA predominantly initiated chemokinesis (increased random movement). These effects were mimicked by structural analogs of GABA with relative specificity at GABAA (muscimol), GABAB (R-baclofen), and GABAC (trans- or cis-4-aminocrotonic acid) receptors. Antagonists of GABAB (saclofen) and GABAC (picrotoxin) receptors partially inhibited responses to both femto- and micromolar GABA; however, only responses to femtomolar GABA were partially blocked by bicuculline, a well established antagonist of GABA at GABAA receptors. Hence, chemotactic responses to femtomolar GABA seem to involve all three classes of GABA receptor proteins, whereas chemokinetic responses to micromolar GABA involve GABAB and GABAC receptor proteins. GABA-induced motility was blocked by loading the cells with the Ca(2+)-chelating molecule bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid, suggesting that intracellular Ca2+ mediates GABA-induced cell movement. Optical recordings of cells loaded with Ca2+ indicator dye revealed that both femto- and micromolar GABA evoked increases in intracellular Ca2+. Thus, GABA-stimulated increases in intracellular Ca2+ may mediate both chemotactic and chemokinetic responses in embryonic cortical cells.
A compartmental nerve-muscle tissue culture system expresses Hebbian activity-dependent synapse modulation. Protein kinase C (PKC) mediates a heterosynaptic loss of efficacy, and we now show that protein kinase A (PKA) is involved in homosynaptic stabilization. Both work through postsynaptic changes in the acetylcholine receptor (AChR) as measured electrophysiologically and by imaging techniques.
Embryonic rat hippocampal neurons were cultured on poly-D-lysine (PDL) or a monolayer of postnatal cortical astrocytes to reveal putative changes in neuronal physiology that involve astrocyte-derived signals during the first 4 d of culture, GABA-induced Cl- current (IGABA) was quantified using outside-out and whole-cell patch-clamp recordings beginning at 30 min, when cells had become adherent. The amplitude and density (current normalized to membrane capacitance) of IGABA in neurons grown on astrocytes became statistically greater than that recorded in neurons grown on PDL after 2 hr in culture (HIC). Although the current density remained unchanged in neurons on astrocytes, that in neurons on PDL decreased and became statistically lower beginning after 2 HIC. The differences in amplitude and density of IGABA in the two groups of neurons were maintained during the 4 d experiment. The upregulation effect of astrocytes on neuronal IGABA required intimate contact between the neuronal cell body and underlying astrocytes. Suppression of spontaneous Cac2+ elevations in astrocytes by bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid that was loaded intracellularly decreased their modulatory effects on IGABA. IGABA in all cells was blocked completely by bicuculline and exhibited virtually identical affinity constants, Hill coefficients, and potentiation by diazepam in the two groups. Outside-out patch recordings revealed identical unitary properties of IGABA in the two groups. More channels per unit of membrane area could explain the astrocyte enhancement of IGABA. The results reveal that cortical astrocytes potentiate IGABA in hippocampal neurons in a contact-dependent manner via a mechanism involving astrocyte Cac2+ elevation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.