Abstract-The myocardium of the failing heart undergoes a number of structural alterations, most notably hypertrophy of cardiac myocytes and an increase in extracellular matrix proteins, often seen as primary fibrosis. Connective tissue growth factor (CTGF) is a key molecule in the process of fibrosis and therefore seems an attractive therapeutic target. Regulation of CTGF expression at the promoter level has been studied extensively, but it is unknown how CTGF transcripts are regulated at the posttranscriptional level. Here we provide several lines of evidence to show that CTGF is importantly regulated by 2 major cardiac microRNAs (miRNAs), miR-133 and miR-30. First, the expression of both miRNAs was inversely related to the amount of CTGF in 2 rodent models of heart disease and in human pathological left ventricular hypertrophy. Second, in cultured cardiomyocytes and fibroblasts, knockdown of these miRNAs increased CTGF levels. Third, overexpression of miR-133 or miR-30c decreased CTGF levels, which was accompanied by decreased production of collagens. Fourth, we show that CTGF is a direct target of these miRNAs, because they directly interact with the 3Ј untranslated region of CTGF. Taken together, our results indicate that miR-133 and miR-30 importantly limit the production of CTGF. We also provide evidence that the decrease of these 2 miRNAs in pathological left ventricular hypertrophy allows CTGF levels to increase, which contributes to collagen synthesis. In conclusion, our results show that both miR-133 and miR-30 directly downregulate CTGF, a key profibrotic protein, and thereby establish an important role for these miRNAs in the control of structural changes in the extracellular matrix of the myocardium.
Background-The cell-associated proteoglycan syndecan-1 (Synd1) closely regulates inflammation and cell-matrix interactions during wound healing and tumorigenesis. The present study investigated whether Synd1 may also regulate cardiac inflammation, matrix remodeling, and function after myocardial infarction (MI). Methods and Results-First, we showed increased protein and mRNA expression of Synd1 from 24 hours on, reaching its maximum at 7 days after MI and declining thereafter. Targeted deletion of Synd1 resulted in increased inflammation and accelerated, yet functionally adverse, infarct healing after MI. In concordance, adenoviral gene expression of Synd1 protected against exaggerated inflammation after MI, mainly by reducing transendothelial adhesion and migration of leukocytes, as shown in vitro. Increased inflammation in the absence of Synd1 resulted in increased monocyte chemoattractant protein-1 expression, increased activity of matrix metalloproteinase-2 and -9, and decreased activity of tissue transglutaminase, associated with increased collagen fragmentation and disorganization. Exaggerated inflammation and adverse matrix remodeling in the absence of Synd1 increased cardiac dilatation and impaired systolic function, whereas gene overexpression of Synd1 reduced inflammation and protected against cardiac dilatation and failure. Conclusions-Increased expression of Synd1 in the infarct protects against exaggerated inflammation and adverse infarct healing, thereby reducing cardiac dilatation and dysfunction after MI in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.