Peritoneal dissemination is a particular form of metastasis typically observed in ovarian cancer and the major cause for poor patient's outcome. Identification of the molecular players involved in ovarian cancer dissemination can offer an approach to develop treatment strategies to improve clinical prognosis. Here, we identified mesothelin (MSLN) as a crucial protein in the multistep process of peritoneal dissemination of ovarian cancer. We demonstrated that MSLN is overexpressed in primary and matched peritoneal metastasis of high-grade serous carcinomas (HGSC). Using several genetically engineered ovarian cancer cell lines, resulting in loss or gain of function, we found that MSLN increased cell survival in suspension and invasion of tumor cells through the mesothelial cell layer in vitro. Intraperitoneal xenografts established with MSLN high ovarian cancer cell lines showed enhanced tumor burden and spread within the peritoneal cavity. These findings provide strong evidences that MSLN is a key player in ovarian cancer progression by triggering peritoneal dissemination and provide support for further clinical investigation of MSLN as a therapeutic target in HGSC.
BRCA1 and BRCA2 mutations are responsible for hereditary breast and ovarian cancer, but they also confer an increased risk for the development of rarer cancers associated with this syndrome, namely, cancer of the pancreas, male breast, peritoneum, and fallopian tube. The objective of this work was to quantify the contribution of the founder mutations BRCA2 c.156_157insAlu and BRCA1 c.3331_3334del for cancer etiology in unselected hospital-based cohorts of Portuguese patients diagnosed with these rarer cancers, by using a strategy that included testing of archival tumor tissue. A total of 102 male breast, 68 pancreatic and 33 peritoneal/fallopian tube carcinoma cases were included in the study. The BRCA2 c.156_157insAlu mutation was observed with a frequency of 7.8% in male breast cancers, 3.0% in peritoneal/fallopian tube cancers, and 1.6% in pancreatic cancers, with estimated total contributions of germline BRCA2 mutations of 14.3%, 5.5%, and 2.8%, respectively. No carriers of the BRCA1 c.3331_3334del mutation were identified. During our study, a patient with an ampulla of Vater carcinoma was incidentally found to carry the BRCA2 c.156_157insAlu mutation, so we decided to test a consecutive series of additional 15 ampullary carcinomas for BRCA1/BRCA2 mutations using a combination of direct founder mutation testing and full gene analysis with next generation sequencing. BRCA2 mutations were observed with a frequency of 14.3% in ampulla of Vater carcinomas. In conclusion, taking into account the implications for both the individuals and their family members, we recommend that patients with these neoplasias should be offered BRCA1/BRCA2 genetic testing and we here show that it is feasible to test for founder mutations in archival tumor tissue. Furthermore, we identified for the first time a high frequency of germline BRCA2 mutations in ampullary cancers.
Background: Renal cell carcinoma (RCC) displays a glycolytic phenotype (Warburg effect). Increased lactate production, impacting on tumor biology and microenvironment modulation, has been implicated in epigenetic mechanisms' regulation, leading to histone deacetylases inhibition. Thus, in-depth knowledge of lactate's impact on epigenome regulation of highly glycolytic tumors might allow for new therapeutic strategies. Herein, we investigated how extracellular lactate affected sirtuin 1 activity, a class III histone deacetylase (sirtuins, SIRTs) in RCC. Methods: In vitro and in vivo interactions between lactate and SIRT1 in RCC were investigated in normal kidney and RCC cell lines. Finally, SIRT1 and N-cadherin immunoexpression was assessed in human RCC and normal renal tissues. Results: Lactate inhibited SIRT1 expression in normal kidney and RCC cells, increasing global H3 and H3K9 acetylation. Cells exposed to lactate showed increased cell migration and invasion entailing a mesenchymal phenotype. Treatment with a SIRT1 inhibitor, nicotinamide (NAM), paralleled lactate effects, promoting cell aggressiveness. In contrast, alpha-cyano-4-hydroxycinnamate (CHC), a lactate transporter inhibitor, reversed them by blocking lactate transport. In vivo (chick chorioallantoic membrane (CAM) assay), lactate and NAM exposure were associated with increased tumor size and blood vessel recruitment, whereas CHC displayed the opposite effect. Moreover, primary RCC revealed N-cadherin upregulation whereas SIRT1 expression levels were downregulated compared to normal tissues. Conclusions: In RCC, lactate enhanced aggressiveness and modulated normal kidney cell phenotype, in part through downregulation of SIRT1, unveiling tumor metabolism as a promising therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.