This study provides with a first insight on Mycobacterium tuberculosis complex epidemiology and genetic diversity in the Cross River State, Nigeria. Starting with 137 smear positive patients recruited over a period of 12 months (June 2008 to May 2009), we obtained 97 pure mycobacterial isolates out of which 81 (83.5%) were identified as M. tuberculosis complex. Genotyping revealed a total of 27 spoligotypes patterns with 10 clusters (n = 64% or 79% of clustered isolates, 2–32 isolates/cluster), with patients in the age group range 25–34 years being significantly associated with shared-type pattern SIT61 (p = 0.019). Comparison with SITVIT2 database showed that with the exception of a single cluster (SIT727/H1), all other clusters observed were representative of West Africa; the two main lineages involved were LAM10-CAM (n = 42/81% or 51.8%) of M. tuberculosis and AFRI_2 sublineage of Mycobacterium africanum (n = 27/81% or 33.3%). Subsequent 12-loci MIRU typing resulted in a total of 13 SIT/MIT clusters (n = 52 isolates, 2–9 isolates per cluster), with a resulting recent n − 1 transmission rate of 48.1%. Available drug-susceptibility testing (DST) results for 58/81 clinical isolates revealed 6/58% or 10.4% cases of multiple drug-resistance (MDR); 5/6 MDR cases were caused by strains belonging to LAM10-CAM lineage (a specific cluster SIT61/MIT266 in 4/6 cases, and an orphan spoligotype pattern in 1/6 case). Additionally, MIT266 was associated with streptomycin resistance (p = 0.016). All the six MDRTB isolates were concomitantly resistance to streptomycin and ethambutol; however, 4/6 MDR strains with identical MIRU patterns were characterized by consecutive strain numbers hence the possibility of laboratory cross contamination could not be excluded in 3/4 serial cases. The present preliminary study underlines the usefulness of spoligotyping and 12-loci MIRU–VNTRs to establish a baseline of circulating genotypic lineages of M. tuberculosis complex in Nigeria.
Highlights d STAG2 promotes anchored chromatin extrusion at CTCF loop boundaries d STAG2 LOF reduces cis-mediated EWSR1-FLI1 transcriptional activity d STAG2 LOF increases mesenchymal features and migratory potential of Ewing cells d STAG2 LOF signature is associated with adverse prognosis in Ewing sarcoma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.