Background
Cancer patients are thought to have an increased risk of developing severe Coronavirus Disease 2019 (COVID-19) infection and of dying from the disease. In this work, predictive factors for COVID-19 severity and mortality in cancer patients were investigated.
Patients and Methods
In this large nationwide retro-prospective cohort study, we collected data on patients with solid tumours and COVID-19 diagnosed between March 1 and June 11, 2020. The primary endpoint was all-cause mortality and COVID-19 severity, defined as admission to an intensive care unit (ICU) and/or mechanical ventilation and/or death, was one of the secondary endpoints.
Results
From April 4 to June 11, 2020, 1289 patients were analysed. The most frequent cancers were digestive and thoracic. Altogether, 424 (33%) patients had a severe form of COVID-19 and 370 (29%) patients died. In multivariate analysis, independent factors associated with death were male sex (odds ratio 1.73, 95%CI: 1.18-2.52), ECOG PS ≥ 2 (OR 3.23, 95%CI: 2.27-4.61), updated Charlson comorbidity index (OR 1.08, 95%CI: 1.01-1.16) and admission to ICU (OR 3.62, 95%CI 2.14-6.11). The same factors, age along with corticosteroids before COVID-19 diagnosis, and thoracic primary tumour site were independently associated with COVID-19 severity. None of the anticancer treatments administered within the previous 3 months had any effect on mortality or COVID-19 severity, except cytotoxic chemotherapy in the subgroup of patients with detectable SARS-CoV-2 by RT-PCR, which was associated with a slight increase of the risk of death (OR 1.53; 95%CI: 1.00-2.34; p = 0.05). A total of 431 (39%) patients had their systemic anticancer treatment interrupted or stopped following diagnosis of COVID-19.
Conclusions
Mortality and COVID-19 severity in cancer patients are high and are associated with general characteristics of patients. We found no deleterious effects of recent anticancer treatments, except for cytotoxic chemotherapy in the RT-PCR-confirmed subgroup of patients. In almost 40% of patients, the systemic anticancer therapy was interrupted or stopped after COVID-19 diagnosis.
Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is one of the prevalent tumors. Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to high-grade neoplasms occurring during the entire lifespan of patients. The pattern of genetic and epigenetic alterations of glioma that develops in NF1 patients and the similarities with sporadic glioma remain unknown. Here, we present the molecular landscape of low- and high-grade gliomas in patients affected by NF1 (NF1-glioma). We found that the predisposing germline mutation of the NF1 gene was frequently converted to homozygosity and the somatic mutational load of NF1-glioma was influenced by age and grade. High-grade tumors harbored genetic alterations of TP53 and CDKN2A, frequent mutations of ATRX associated with Alternative Lengthening of Telomere, and were enriched in genetic alterations of transcription/chromatin regulation and PI3 kinase pathways. Low-grade tumors exhibited fewer mutations that were over-represented in genes of the MAP kinase pathway. Approximately 50% of low-grade NF1-gliomas displayed an immune signature, T lymphocyte infiltrates, and increased neo-antigen load. DNA methylation assigned NF1-glioma to LGm6, a poorly defined Isocitrate Dehydrogenase 1 wild-type subgroup enriched with ATRX mutations. Thus, the profiling of NF1-glioma defined a distinct landscape that recapitulates a subset of sporadic tumors.
Background
DEPOSEIN (NCT01645839) was a randomized open-label phase III study to explore the role of intrathecal chemotherapy in patients with newly diagnosed leptomeningeal metastasis (LM), a common manifestation of breast cancer.
Methods
Patients with newly diagnosed LM defined by tumor cells in the cerebrospinal fluid or combination of clinical and neuroimaging signs of LM were randomized to receive systemic therapy alone (control group) or systemic therapy plus intrathecal liposomal cytarabine (experimental group). Progression-free survival related to LM (LM-PFS) was the primary endpoint.
Results
Thirty-seven and 36 patients were assigned to the control and the experimental groups. Median number of liposomal cytarabine injections in the experimental group was 5 (range 1–20). Focal radiotherapy was performed in 6 (16%) and 3 (8%) patients in the control and experimental groups. In the intent-to-treat population, median LM-PFS was 2.2 months (95% CI: 1.3–3.1) in the control versus 3.8 months (95% CI: 2.3–6.8) in the experimental group (hazard ratio 0.61, 95% CI: 0.38–0.98) (P = 0.04). Seventy-one patients have died. Median overall survival was 4.0 months (95% CI: 2.2–6.3) in the control versus 7.3 months (95% CI: 3.9–9.6) in the experimental group (hazard ratio 0.85, 95% CI: 0.53–1.36) (P = 0.51). Serious adverse events were reported in 22 and 30 patients, respectively. Quality of life until progression did not differ between groups.
Conclusion
The addition of intrathecal liposomal cytarabine to systemic treatment improves LM-related PFS. Confirmatory trials with optimized patient selection criteria and more active drugs may be required to demonstrate a survival benefit from intrathecal pharmacotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.