BackgroundThe efficacy of the CTL component of a future HIV-1 vaccine will depend on the induction of responses with the most potent antiviral activity and broad HLA class I restriction. However, current HIV vaccine designs are largely based on viral sequence alignments only, not incorporating experimental data on T cell function and specificity.MethodsHere, 950 untreated HIV-1 clade B or -C infected individuals were tested for responses to sets of 410 overlapping peptides (OLP) spanning the entire HIV-1 proteome. For each OLP, a "protective ratio" (PR) was calculated as the ratio of median viral loads (VL) between OLP non-responders and responders.ResultsFor both clades, there was a negative relationship between the PR and the entropy of the OLP sequence. There was also a significant additive effect of multiple responses to beneficial OLP. Responses to beneficial OLP were of significantly higher functional avidity than responses to non-beneficial OLP. They also had superior in-vitro antiviral activities and, importantly, were at least as predictive of individuals' viral loads than their HLA class I genotypes.ConclusionsThe data thus identify immunogen sequence candidates for HIV and provide an approach for T cell immunogen design applicable to other viral infections.
Elite controllers (EC) represent a small subset of HIV-1-infected people that spontaneously control viral replication. However, natural virological suppression and absence of immune dysfunction are not always long-term sustained. We define exceptional EC (EEC) as HIV-1 subjects who maintain the EC characteristics without disease progression for more than 25 years. We analyzed three EEC, diagnosed between 1988 and 1992, who never showed signs of clinical disease progression in absence of any antiretroviral treatment. A comprehensive clinical, virological, and immunological study was performed. The individuals simultaneously exhibited ≥3 described host protective alleles, low levels of total HIV-1 DNA (<20 copies/10 6 CD4 + t-cells) without evidence of replication-competent viruses (<0.025 IUPM), consistent with high levels of defective genomes, strong cellular HIV-1-specific immune response, and a high poly-functionality index (>0.50). Inflammation levels of EEC were similar to HIV-1 negative donors. Remarkably, they showed an exceptional lack of viral evolution and 8-fold lower genetic diversity (<0.01 s/n) in env gene than other EC. We postulate that these EEC represent cases of spontaneous functional HIV-1 cure. A non-functional and non-genetically evolving viral reservoir along with an HIV-1-specific immune response seems to be key for the spontaneous functional cure. The use of combination antiretroviral therapy (ART) results in sustained undetectable plasma viremia in HIV-1-infected individuals. The success of ART led to initial optimism that HIV-1 may be cured by ART alone; however subsequent studies indicating that such a cure may take as long as 70 years 1,2 led researchers to attempt complementary strategies to reduce viral persistence and potentially facilitate HIV-1 remission 3. However, this has proven extremely difficult to achieve because it entails the eradication of any infectious viral form from the body. This has only putatively been achieved so far in two individuals, the Berlin and London patients 4,5. A less stringent objective, known as functional cure, consists in the permanent suppression of HIV-1 viral replication in the absence of ART even if full viral eradication is not achieved 6 .
Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6 gag -p6 pol region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6 Gag ), or by changes in activation of the viral protease (p6 Pol ). Duplication of the proline-rich p6 Gag PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drugnaïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6 Pol ), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.Currently available combination antiretroviral therapy fails to achieve optimal suppression of viral replication in 20 to 45% of patients (21). A leading factor for failure is the development of resistance by mutation within the pol gene, encoding the viral reverse transcriptase (RT) and protease, which are the targets of currently used antiretroviral agents. In general, initial or primary mutations modify the active sites of these viral enzymes, followed by stepwise accumulation of secondary or compensatory mutations leading to restored enzyme functionality (5, 13).Given the extreme plasticity of the human immunodeficiency virus type 1 (HIV-1) genome, we speculated that genetic changes at a distance could contribute to the process of drug resistance. For this purpose, we analyzed the p1-p6 gag -p6 pol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.