PURPOSE Recurrently mutated genes and chromosomal abnormalities have been identified in myelodysplastic syndromes (MDS). We aim to integrate these genomic features into disease classification and prognostication. METHODS We retrospectively enrolled 2,043 patients. Using Bayesian networks and Dirichlet processes, we combined mutations in 47 genes with cytogenetic abnormalities to identify genetic associations and subgroups. Random-effects Cox proportional hazards multistate modeling was used for developing prognostic models. An independent validation on 318 cases was performed. RESULTS We identify eight MDS groups (clusters) according to specific genomic features. In five groups, dominant genomic features include splicing gene mutations ( SF3B1, SRSF2, and U2AF1) that occur early in disease history, determine specific phenotypes, and drive disease evolution. These groups display different prognosis (groups with SF3B1 mutations being associated with better survival). Specific co-mutation patterns account for clinical heterogeneity within SF3B1- and SRSF2-related MDS. MDS with complex karyotype and/or TP53 gene abnormalities and MDS with acute leukemia–like mutations show poorest prognosis. MDS with 5q deletion are clustered into two distinct groups according to the number of mutated genes and/or presence of TP53 mutations. By integrating 63 clinical and genomic variables, we define a novel prognostic model that generates personally tailored predictions of survival. The predicted and observed outcomes correlate well in internal cross-validation and in an independent external cohort. This model substantially improves predictive accuracy of currently available prognostic tools. We have created a Web portal that allows outcome predictions to be generated for user-defined constellations of genomic and clinical features. CONCLUSION Genomic landscape in MDS reveals distinct subgroups associated with specific clinical features and discrete patterns of evolution, providing a proof of concept for next-generation disease classification and prognosis.
Objective Lombardy (Italy) was the epicentre of the COVID-19 pandemic in March 2020. The healthcare system suffered from a shortage of ICU beds and oxygenation support devices. In our Institution, most patients received chest CT at admission, only interpreted visually. Given the proven value of quantitative CT analysis (QCT) in the setting of ARDS, we tested QCT as an outcome predictor for COVID-19. Methods We performed a single-centre retrospective study on COVID-19 patients hospitalised from January 25, 2020, to April 28, 2020, who received CT at admission prompted by respiratory symptoms such as dyspnea or desaturation. QCT was performed using a semi-automated method (3D Slicer). Lungs were divided by Hounsfield unit intervals. Compromised lung (%CL) volume was the sum of poorly and non-aerated volumes (− 500, 100 HU). We collected patient's clinical data including oxygenation support throughout hospitalisation. Results Two hundred twenty-two patients (163 males, median age 66, IQR 54-6) were included; 75% received oxygenation support (20% intubation rate). Compromised lung volume was the most accurate outcome predictor (logistic regression, p < 0.001). %CL values in the 6-23% range increased risk of oxygenation support; values above 23% were at risk for intubation. %CL showed a negative correlation with PaO 2 /FiO 2 ratio (p < 0.001) and was a risk factor for in-hospital mortality (p < 0.001). Conclusions QCT provides new metrics of COVID-19. The compromised lung volume is accurate in predicting the need for oxygenation support and intubation and is a significant risk factor for in-hospital death. QCT may serve as a tool for the triaging process of COVID-19. Key Points • Quantitative computer-aided analysis of chest CT (QCT) provides new metrics of COVID-19. • The compromised lung volume measured in the − 500, 100 HU interval predicts oxygenation support and intubation and is a risk factor for in-hospital death. • Compromised lung values in the 6-23% range prompt oxygenation therapy; values above 23% increase the need for intubation.
Background and aimsArtificial intelligence has been shown to increase adenoma detection rate (ADR) as the main surrogate outcome parameter of colonoscopy quality. To which extent this effect may be related to physician experience is not known. We performed a randomised trial with colonoscopists in their qualification period (AID-2) and compared these data with a previously published randomised trial in expert endoscopists (AID-1).MethodsIn this prospective, randomised controlled non-inferiority trial (AID-2), 10 non-expert endoscopists (<2000 colonoscopies) performed screening/surveillance/diagnostic colonoscopies in consecutive 40–80 year-old subjects using high-definition colonoscopy with or without a real-time deep-learning computer-aided detection (CADe) (GI Genius, Medtronic). The primary outcome was ADR in both groups with histology of resected lesions as reference. In a post-hoc analysis, data from this randomised controlled trial (RCT) were compared with data from the previous AID-1 RCT involving six experienced endoscopists in an otherwise similar setting.ResultsIn 660 patients (62.3±10 years; men/women: 330/330) with equal distribution of study parameters, overall ADR was higher in the CADe than in the control group (53.3% vs 44.5%; relative risk (RR): 1.22; 95% CI: 1.04 to 1.40; p<0.01 for non-inferiority and p=0.02 for superiority). Similar increases were seen in adenoma numbers per colonoscopy and in small and distal lesions. No differences were observed with regards to detection of non-neoplastic lesions. When pooling these data with those from the AID-1 study, use of CADe (RR 1.29; 95% CI: 1.16 to 1.42) and colonoscopy indication, but not the level of examiner experience (RR 1.02; 95% CI: 0.89 to 1.16) were associated with ADR differences in a multivariate analysis.ConclusionsIn less experienced examiners, CADe assistance during colonoscopy increased ADR and a number of related polyp parameters as compared with the control group. Experience appears to play a minor role as determining factor for ADR.Trial registration numberNCT:04260321.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.