Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffinembedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.cancer diagnostics | high-content cellular analysis | image analysis | mTOR | multiplexing
Purpose: Colorectal cancer prognosis is currently predicted from pathologic staging, providing limited discrimination for Dukes stage B and C disease. Additional markers for outcome are required to help guide therapy selection for individual patients. Experimental Design: A multisite single-platform microarray study was done on 553 colorectal cancers. Gene expression changes were identified between stage A and D tumors (three training sets) and assessed as a prognosis signature in stage B and C tumors (independent test and external validation sets). For stage C patients, the adjusted hazard ratio was 2.9 (95% confidence interval, 1.1-7.6; P = 0.016). Similar results were obtained for an external set of stage B and C patients. The prognosis signature was enriched for downregulated immune response genes and upregulated cell signaling and extracellular matrix genes. Accordingly, sparse tumor infiltration with mononuclear chronic inflammatory cells was associated with poor outcome in independent patients. Conclusions: Metastasis-associated gene expression changes can be used to refine traditional outcome prediction, providing a rational approach for tailoring treatments to subsets of patients. (Clin Cancer Res 2009;15(24):7642-51) Colorectal cancer is often detected at a stage when complete resection of the primary cancer is possible, yet 40% to 50% of patients who undergo potentially curative surgery alone relapse and die of metastatic disease (1). Patient risk for recurrence is currently largely predicted from the extent of spread of the primary tumor, and this is the major determinant of further clinical management. Although most patients with Dukes stage C (lymph-node positive) cancer receive a combination of 5-fluorouracil and oxaliplatin, adjuvant treatment is offered to only a subset of Dukes stage B (localized disease) patients
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.