Tremendous efforts have been devoted to the enhancement of drug solubility using nanotechnologies, but few of them are capable to produce drug particles with sizes less than a few nanometers. This challenge has been addressed here by using biocompatible versatile γ-cyclodextrin (γ-CD) metal-organic framework (CD-MOF) large molecular cages in which azilsartan (AZL) was successfully confined producing clusters in the nanometer range. This strategy allowed to improve the bioavailability of AZL in Sprague–Dawley rats by 9.7-fold after loading into CD-MOF. The apparent solubility of AZL/CD-MOF was enhanced by 340-fold when compared to the pure drug. Based on molecular modeling, a dual molecular mechanism of nanoclusterization and complexation of AZL inside the CD-MOF cages was proposed, which was confirmed by small angle X-ray scattering (SAXS) and synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR) techniques. In a typical cage-like unit of CD-MOF, three molecules of AZL were included by the γ-CD pairs, whilst other three AZL molecules formed a nanocluster inside the 1.7 nm sized cavity surrounded by six γ-CDs. This research demonstrates a dual molecular mechanism of complexation and nanoclusterization in CD-MOF leading to significant improvement in the bioavailability of insoluble drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.