The purpose of this study was to develop data on the risk of listeriosis to support a science-based strategy for addressing Listeria monocytogenes in foods in the United States. Eight categories of ready-to-eat foods were collected over 14 to 23 months from retail markets at Maryland and northern California FoodNet sites. The product categories included luncheon meats, deli salads, fresh soft "Hispanic-style" cheeses, bagged salads, blue-veined and soft mold-ripened cheeses, smoked seafood, and seafood salads. The presence and levels of L. monocytogenes in the samples were determined by rapid DNA-based assays in combination with culture methods. Of 31,705 samples tested, 577 were positive. The overall prevalence was 1.82%. with prevalences ranging from 0.17 to 4.7% among the product categories. L. monocytogenes levels in the positive samples varied from <0.3 MPN (most probable number) per g to 1.5 x 10(5) CFU/g, with 402 samples having levels of <0.3 MPN/g, 21 samples having levels of >10(2) CFU/g, and the rest of the samples having intermediate levels. No obvious trends with respect to seasonality were observed. Significant differences (P < 0.05) between the sampling sites were found, with higher prevalences for threes categories in northern California and for two categories in Maryland. Significantly (P < 0.001) higher prevalences were found for in-store-packaged samples than for manufacturer-packaged samples of luncheon meats, deli salads, and seafood salads, while 16 of the 21 samples with higher counts were manufacturer packaged. The data collected in this study help to fill gaps in the knowledge about the occurrence of L. monocytogenes in foods, and this new information should be useful in the assessment of the risk posed by L. monocytogenes to consumers.
. Assignment of isolates to lineages and to the majority of L. monocytogenes subtypes was significantly associated with the isolate source (food or human), although most subtypes and lineages included both human and food isolates. Some subtypes were also significantly associated with isolation from specific food types. Tissue culture plaque assay characterization of the 42 human isolates from Maryland and California and of 91 representative food isolates revealed significantly higher average infectivity and cell-to-cell spread for the human isolates, further supporting the hypothesis that food and human isolates form distinct populations. Combined analysis of subtype and cytopathogenicity data showed that strains classified into specific ribotypes previously linked to multiple human listeriosis outbreaks, as well as those classified into lineage I, are more common among human cases and generate larger plaques than other subtypes, suggesting that these subtypes may represent particularly virulent clonal groups. These data will provide a framework for prediction of the public health risk associated with specific L. monocytogenes subtypes.
The heat resistance data on Listeria monocytogenes in culture media and foods are summarized. Most heat resistance data for foods have been obtained in dairy, meat, poultry, and egg products. Limited data have been published on seafood, fruits, and vegetables. The methodologies employed have evolved over time; hence data from earlier experiments are not directly comparable to more recent studies. Many factors influence the heat resistance of L. monocytogenes. Variation exists among different strains in their ability to withstand heat treatment. In addition, heat resistance is influenced by age of the culture, growth conditions, recovery media, and characteristics of foods such as salt content, a(w), acidity, and the presence of other inhibitors. Listeriae are more heat resistant than most other nonspore-forming foodborne pathogens, and thus, processing recommendations based on data from experiments with Salmonella spp. or pathogenic Escherichia coli may not be sufficient to eliminate similar numbers of L. monocytogenes. The data provided in this review may prove useful for food processors in determining appropriate times and temperatures for producing foods free of vegetative pathogens.
Four smoked fish processing plants were used as a model system to characterize Listeria monocytogenes contamination patterns in ready-to-eat food production environments. Each of the four plants was sampled monthly for approximately 1 year. At each sampling, four to six raw fish and four to six finished product samples were collected from corresponding lots. In addition, 12 to 14 environmental sponge samples were collected several hours after the start of production at sites selected as being likely contamination sources. A total of 234 raw fish, 233 finished products, and 553 environmental samples were tested. Presumptive Listeria spp. were isolated from 16.7% of the raw fish samples, 9.0% of the finished product samples, and 27.3% of the environmental samples. L. monocytogenes was isolated from 3.8% of the raw fish samples (0 to 10%, depending on the plant), 1.3% of the finished product samples (0 to 3.3%), and 12.8% of the environmental samples (0 to 29.8%). Among the environmental samples, L. monocytogenes was found in 23.7% of the samples taken from drains, 4.8% of the samples taken from food contact surfaces, 10.4% of the samples taken from employee contact surfaces (aprons, hands, and door handles), and 12.3% of the samples taken from other nonfood contact surfaces. Listeria spp. were isolated from environmental samples in each of the four plants, whereas L. monocytogenes was not found in any of the environmental samples from one plant. Overall, the L. monocytogenes prevalence in the plant environment showed a statistically significant (P < 0.0001) positive relationship with the prevalence of this organism in finished product samples. Automated EcoRI ribotyping differentiated 15 ribotypes among the 83 L. monocytogenes isolates. For each of the three plants with L. monocytogenes-positive environmental samples, one or two ribotypes seemed to persist in the plant environment during the study period. In one plant, a specific L. monocytogenes ribotype represented 44% of the L. monocytogenes-positive environmental samples and was also responsible for one of the two finished product positives found in this plant. In another plant, a specific L. monocytogenes ribotype persisted in the raw fish handling area. However, this ribotype was never isolated from the finished product area in this plant, indicating that this operation has achieved effective separation of raw and finished product areas. Molecular subtyping methods can help identify plant-specific L. monocytogenes contamination routes and thus provide the knowledge needed to implement improved L. monocytogenes control strategies.
Four ready-to-eat smoked fish plants were monitored for 2 years to study Listeria contamination patterns and the impact of plant-specific Listeria control strategies, including employee training and targeted sanitation procedures, on Listeria contamination patterns. Samples from the processing plant environment and from raw and finished product were collected monthly and tested for Listeria spp. and Listeria monocytogenes. Before implementation of intervention strategies, 19.2% of raw product samples (n = 276), 8.7% of finished product samples (n = 275), and 26.1% of environmental samples (n = 617) tested positive for Listeria spp. During and after implementation of Listeria control strategies, 19.0% of raw product samples (n = 242), 7.0% of finished product samples (n = 244), and 19.5% of environmental samples (n = 527) were positive for Listeria spp. In one of the four fish plants (plant 4), no environmental samples were positive for L. monocytogenes, and this plant was thus excluded from statistical analyses. Based on data pooled from plants 1, 2, and 3, environmental Listeria spp. prevalence was significantly lower (P < 0.05) for nonfood contact surfaces and the finished product area and for the overall core environmental samples after implementation of control strategies. Listeria prevalence for floor drains was similar before and after implementation of controls (49.6 and 54.2%, respectively). Regression analysis revealed a significant positive relationship (P < 0.05) between L. monocytogenes prevalence in the environment and in finished products before implementation of control strategies; however, this relationship was absolved by implementation of Listeria control strategies. Molecular subtyping (EcoRI ribotyping) revealed that specific L. monocytogenes ribotypes persisted in three processing plants over time. These persistent ribotypes were responsible for all six finished product contamination events detected in plant 1. Ribotype data also indicated that incoming raw material is only rarely a direct source of finished product contamination. While these data indicate that plant-specific Listeria control strategies can reduce cross-contamination and prevalence of Listeria spp. and L. monocytogenes in the plant environment, elimination of persistent L. monocytogenes strains remains a considerable challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.