The NL-eEDM collaboration is building an experimental setup to search for the permanent electric dipole moment of the electron in a slow beam of cold barium fluoride molecules [Eur. Phys. J. D, 72, 197 (2018)]. Knowledge of molecular properties of BaF is thus needed to plan the measurements and in particular to determine the optimal laser-cooling scheme. Accurate and reliable theoretical predictions of these properties require incorporation of both high-order correlation and relativistic effects in the calculations. In this work theoretical investigations of the ground and the lowest excited states of BaF and its lighter homologues, CaF and SrF, are carried out in the framework of the relativistic Fock-space coupled cluster (FSCC) and multireference configuration interaction (MRCI) methods. Using the calculated molecular properties, we determine the Franck-Condon factors (FCFs) for the A 2 Π 1/2 → X 2 Σ + 1/2 transition, which was successfully used for cooling CaF and SrF and is now considered for BaF. For all three species, the FCFs are found to be highly diagonal. Calculations are also performed for the B 2 Σ + 1/2 → X 2 Σ + 1/2 transition recently exploited for laser-cooling of CaF; it is shown that this transition is not suitable for laser-cooling of BaF, due to the non-diagonal nature of the FCFs in this system. Special attention is given to the properties of the A 2 ∆ state, which in the case of BaF causes a leak channel, in contrast to CaF and SrF species where this state is energetically above the excited states used in laser-cooling. We also present the dipole moments of the ground and the excited states of the three molecules and the transition dipole moments (TDMs) between the different states. Finally, using the calculated FCFs and TDMs we determine that the A 2 Π 1/2 → X 2 Σ + 1/2 transition is suitable for transverse cooling in BaF.
A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic molecules containing heavy elements experience enhanced sensitivity to parity (P) and time-reversal (T)-violating phenomena, such as the eEDM and the scalar-pseudoscalar (S-PS) interaction between the nucleons and the electrons, and are thus promising candidates for measurements. The NL-eEDM collaboration is preparing an experiment to measure the eEDM and S-PS interaction in a slow beam of cold BaF molecules [P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018)]. Accurate knowledge of the electronic structure parameters, W d and Ws, connecting the eEDM and the S-PS interaction to the measurable energy shifts is crucial for the interpretation of these measurements. In this work, we use the finite field relativistic coupled cluster approach to calculate the W d and Ws parameters in the ground state of the BaF molecule. Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ± 0.12 × 10 24 Hz e cm for W d and 8.29 ± 0.12 kHz for Ws.
We report on the electrostatic trapping of neutral SrF molecules. The molecules are captured from a cryogenic buffer-gas beam source into the moving traps of a 4.5-m-long traveling-wave Stark decelerator. The SrF molecules in X 2 Σ þ ðv ¼ 0; N ¼ 1Þ state are brought to rest as the velocity of the moving traps is gradually reduced from 190 m=s to zero. The molecules are held for up to 50 ms in multiple electric traps of the decelerator. The trapped packets have a volume (FWHM) of 1 mm 3 and a velocity spread of 5ð1Þ m=s, which corresponds to a temperature of 60(20) mK. Our result demonstrates a factor 3 increase in the molecular mass that has been Stark decelerated and trapped. Heavy molecules (mass > 100 amu) offer a highly increased sensitivity to probe physics beyond the standard model. This work significantly extends the species of neutral molecules of which slow beams can be created for collision studies, precision measurement, and trapping experiments.
A supersonic beam source for SrF and BaF molecules is constructed by combining the expansion of carrier gas (a mixture of 2% SF6 and 98% argon) from an Even–Lavie valve with laser ablation of a barium/strontium metal target at a repetition rate of 10 Hz. Molecular beams with a narrow translational velocity spread are produced at relative values of Δv/v = 0.053(11) and 0.054(9) for SrF and BaF, respectively. The relative velocity spread of the beams produced in our source is lower in comparison with the results from other metal fluoride beams produced in supersonic laser ablation sources. The rotational temperature of BaF is measured to be 3.5 K. The source produces 6 × 108 and 107 molecules per steradian per pulse in the X2Σ+ (ν = 0, N = 1) state of BaF and SrF molecules, respectively, a state amenable to Stark deceleration and laser cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.