PURPOSE: Our aim was to study the association between abnormal findings on chest and brain imaging in patients with coronavirus disease 2019 (COVID-19) and neurologic symptoms. MATERIALS AND METHODS: In this retrospective, international multicenter study, we reviewed the electronic medical records and imaging of hospitalized patients with COVID-19 from March 3, 2020, to June 25, 2020. Our inclusion criteria were patients diagnosed with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection with acute neurologic manifestations and available chest CT and brain imaging. The 5 lobes of the lungs were individually scored on a scale of 0-5 (0 corresponded to no involvement and 5 corresponded to .75% involvement). A CT lung severity score was determined as the sum of lung involvement, ranging from 0 (no involvement) to 25 (maximum involvement). RESULTS: A total of 135 patients met the inclusion criteria with 132 brain CT, 36 brain MR imaging, 7 MRA of the head and neck, and 135 chest CT studies. Compared with 86 (64%) patients without acute abnormal findings on neuroimaging, 49 (36%) patients with these findings had a significantly higher mean CT lung severity score (9.9 versus 5.8, P , .001). These patients were more likely to present with ischemic stroke (40 [82%] versus 11 [13%], P , .0001) and were more likely to have either ground-glass opacities or consolidation (46 [94%] versus 73 [84%], P ¼ .01) in the lungs. A threshold of the CT lung severity score of .8 was found to be 74% sensitive and 65% specific for acute abnormal findings on neuroimaging. The neuroimaging hallmarks of these patients were acute ischemic infarct (28%), intracranial hemorrhage (10%) including microhemorrhages (19%), and leukoencephalopathy with and/or without restricted diffusion (11%). The predominant CT chest findings were peripheral ground-glass opacities with or without consolidation. CONCLUSIONS: The CT lung disease severity score may be predictive of acute abnormalities on neuroimaging in patients with COVID-19 with neurologic manifestations. This can be used as a predictive tool in patient management to improve clinical outcome. ABBREVIATIONS: COVID-19 ¼ coronavirus disease 2019; GGOs ¼ ground-glass opacities; PRES ¼ posterior reversible encephalopathy syndrome; SARS-CoV-2 ¼ Severe Acute Respiratory Syndrome coronavirus 2; TIPIC ¼ Transient Perivascular Inflammation of the Carotid artery syndrome S evere Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China, in December 2019 and has rapidly spread around the world to become a pandemic. 1 Extensive studies have described chest and brain imaging characteristics associated with coronavirus disease 2019 (COVID-19). 2-13 The hallmarks of COVID-19 infection on chest imaging
Background and Purpose: The Alberta Stroke Program Early Computed Tomography (CT) Score (ASPECTS) and CT perfusion (CTP) are commonly used to predict the ischemic core in acute ischemic strokes. CT angiography source images (CTA-SI) can also provide additional information to identify the extent of ischemia. Our objective was to investigate the correlation of noncontrast CT (NCCT) ASPECTS and CTA-SI ASPECTS with CTP core volumes. Methods: We utilized a single institutional, retrospective registry of consecutive patients with acute ischemic stroke with large vessel occlusion between May 2016 and May 2018. We graded ASPECTS both on baseline NCCT and CTA-SI and measured CTP core using automated RAPID software (cerebral blood flow <30%). We used Spearman’s correlation coefficients to evaluate the correlation between continuous variables. Results: A total of 52 patients fit the inclusion criteria of large vessel occlusion in 6 to 24 hours and baseline imaging work up of NCCT, CTA, and CTP. The median age was 63 (interquartile range=53.5–75) and 38.46% were female. The median NCCT ASPECTS was 7 (interquartile range=6–9), CTA-SI ASPECTS was 5 (interquartile range=4–7), and CTP core was 14.5 mL (interquartile range=0–46 mL). There was a moderate correlation between NCCT ASPECTS and CTP core (r s =−0.55, P <0.0001) and between CTA-SI ASPECTS and CTP core (r s =−0.50, P =0.0002). The optimal NCCT ASPECTS cutoff score to detect CTP core ≤70 mL was ≥6 (sensitivity, 0.84; specificity, 0.57; positive predictive value, 0.93; negative predictive value, 0.36) and the optimal CTA-SI ASPECTS was ≥5 (sensitivity, 0.76; specificity, 0.71; positive predictive value, 0.94; negative predictive value, 0.31). Conclusions: There was a moderate correlation between NCCT and CTA-SI ASPECTS in predicting CTP defined ischemic core in delayed time windows. Further studies are needed to determine if NCCT and CTA imaging could be used for image-based patient selection when CTP imaging is not available.
Small vessel disease, a disorder of cerebral microvessels, is an expanding epidemic and a common cause of stroke and dementia. Despite being almost ubiquitous in brain imaging, the clinicoradiologic association of small vessel disease is weak, and the underlying pathogenesis is poorly understood. The STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) criteria have standardized the nomenclature. These include white matter hyperintensities of presumed vascular origin, recent small subcortical infarcts, lacunes of presumed vascular origin, prominent perivascular spaces, cerebral microbleeds, superficial siderosis, cortical microinfarcts, and brain atrophy. Recently, the rigid categories among cognitive impairment, vascular dementia, stroke, and small vessel disease have become outdated, with a greater emphasis on brain health. Conventional and advanced small vessel disease imaging markers allow a comprehensive assessment of global brain heath. In this review, we discuss the pathophysiology of small vessel disease neuroimaging nomenclature by means of the STRIVE criteria, clinical implications, the role of advanced imaging, and future directions.ABBREVIATIONS: BOLD ¼ blood oxygen level-dependent; CAA ¼ cerebral amyloid angiopathy (SVD type 2); CMB ¼ cerebral microbleeds; cSS ¼ cortical superficial siderosis; HA ¼ hypertensive arteriolosclerosis (SVD type 1); ICH ¼ intracerebral hemorrhage; PVS ¼ prominent perivascular spaces; STRIVE ¼ STandards for ReportIng Vascular changes on nEuroimaging; SVD ¼ small vessel disease; WMH ¼ white matter hyperintensities
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.