COVID‐19 has brought speculations on potential transmission routes of the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the causal agent of the pandemic. It is reported that the main route of virus transmission to be person‐to‐person by respiratory droplets; however, people have raised concerns on the possible transmission of SARS‐CoV‐2 to humans via food and packaging and its potential effects on food safety. This review discusses food safety issues in the COVID‐19 pandemic and reveals its possible transmission in cold‐chain food. The first outbreak of COVID‐19 in late 2019 was associated with a seafood market in Wuhan, China, while the second outbreak of COVID‐19 in June 2020 was also related to a seafood market in Beijing, China. As of 2020, several frozen seafood products linked with SARS‐CoV‐2 have been reported in China. According to the current survey and scientific studies, the risk of infection by SARS‐CoV‐2 from cold‐chain food, food products, and food packaging is thought to be very low. However, studies on food cold chain contamination have shown that SARS‐CoV‐2 remained highly stable under refrigerated (4°C) and even in freezing conditions (−10 to −80°C). Since one mode of SARS‐CoV‐2 transmission appears to be touching contaminated surfaces, it is important to clean and sanitize food contact surfaces properly. Understanding food safety hazard risks is essential to avoid potential negative health effects and SARS‐CoV‐2 transmission in the food supply chain during the COVID‐19 pandemic.
Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2 =0.942, Q 2 LOO =0.910; CoMFA: R 2 =0.979, Q 2 =0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structureactivity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents.
Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage–bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.
Seeds are one of the primary sources of contamination with foodborne pathogens, such as pathogenic Escherichia coli, and various Salmonella serovars, for produce, particularly sprouts. Due to the susceptibility of sprout growth to chemical-based antimicrobials and the rising issue of antimicrobial resistance, developing innovative antimicrobial interventions is an urgent need. Therefore, the objective of this study was to characterize Escherichia phage Sa157lw (or Sa157lw) for the biocontrol potential of Salmonella Typhimurium and E. coli O157:H7 on contaminated mung bean seeds. Phage Sa157lw was subjected to whole-genome sequencing and biological characterization, including morphology, one-step growth curve, and stress stability tests. Later, antimicrobial activity was determined in vitro and upon application on the mung bean seeds artificially contaminated with E. coli O157:H7 or Salmonella Typhimurium. Sa157lw possessed a contractile tail and belonged to the Kuttervirus genus under the Ackermannviridae family, sharing a close evolutionary relationship with E. coli phage ECML-4 and Kuttervirus ViI; however, tail spike genes (ORF_102 and ORF_104) were the primary region of difference. Comparative genomics showed that Sa157lw encoded a cluster of tail spike genes—including ORF_101, ORF_102, and ORF_104—sharing high amino acid similarity with the counterfeits of various Salmonella phages. Additionally, Sa157lw harbored a unique tail fiber (ORF_103), possibly related to the receptors binding of O157 strains. The genomic evidence accounted for the polyvalent effects of Sa157lw against E. coli O157:H7 and various Salmonella serovars (Typhimurium, Enteritidis, Agona, Saintpaul, and Heidelberg). Furthermore, the phage did not contain any virulence, antibiotic-resistant, or lysogenic genes. Sa157lw had a 30-min latent period on both E. coli O157:H7 and Salmonella Typhimurium, with an estimated burst size of 130 and 220 PFU/CFU, respectively, and was stable at a wide range of temperatures (4–60°C) and pH (pH4 to pH10). The phage application demonstrated a strong anti-E. coli O157:H7 and anti-Salmonella Typhimurium effects in 1.1 and 1.8 log reduction on the contaminated mung bean seeds after overnight storage at 22°C. These findings provide valuable insights into the polyvalent Sa157lw as a potential biocontrol agent of Salmonella Typhimurium and E. coli O157:H7 on sprout seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.