Background Deletions of IKAROS ( IKZF1 ) frequently occur in B-cell precursor acute lymphoblastic leukemia (B-ALL) but the mechanisms by which they influence pathogenesis are unclear. To address this issue, a cohort of 144 adult B-ALL patients (106 BCR-ABL1 -positive and 38 B-ALL negative for known molecular rearrangements) was screened for IKZF1 deletions by single nucleotide polymorphism (SNP) arrays; a sub-cohort of these patients (44%) was then analyzed for gene expression profiling. Principal Findings Total or partial deletions of IKZF1 were more frequent in BCR-ABL1 -positive than in BCR-ABL1 -negative B-ALL cases (75% vs 58%, respectively, p = 0.04). Comparison of the gene expression signatures of patients carrying IKZF1 deletion vs those without showed a unique signature featured by down-regulation of B-cell lineage and DNA repair genes and up-regulation of genes involved in cell cycle, JAK-STAT signalling and stem cell self-renewal. Through chromatin immunoprecipitation and luciferase reporter assays we corroborated these findings both in vivo and in vitro , showing that Ikaros deleted isoforms lacked the ability to directly regulate a large group of the genes in the signature, such as IGLL1 , BLK , EBF1 , MSH2, BUB3, ETV6, YES1, CDKN1A (p21), CDKN2C (p18) and MCL1 . Conclusions Here we identified and validated for the first time molecular pathways specifically controlled by IKZF1 , shedding light into IKZF1 role in B-ALL pathogenesis.
Chromothripsis is a one-step genome-shattering catastrophe resulting from disruption of one or few chromosomes in multiple fragments and consequent random rejoining and repair. This study defines incidence of chromothripsis in 395 newly diagnosed adult acute myeloid leukemia (AML) patients from three institutions, its impact on survival and its genomic background. SNP 6.0 or CytoscanHD Array (Affymetrix®) were performed on all samples. We detected chromothripsis with a custom algorithm in 26/395 patients. Patients harboring chromothripsis had higher age (p = 0.002), ELN high risk (HR) (p < 0.001), lower white blood cell (WBC) count (p = 0.040), TP53 loss, and/or mutations (p < 0.001) while FLT3 (p = 0.025), and NPM1 (p = 0.032) mutations were mutually exclusive with chromothripsis. Chromothripsis-positive patients showed a worse overall survival (OS) (p < 0.001) compared with HR patients (p = 0.011) and a poor prognosis in a COX-HR optimal regression model. Chromothripsis presented the hallmarks of chromosome instability [i.e., TP53 alteration, 5q deletion, higher mean of copy number alteration (CNA), complex karyotype, alterations in DNA repair, and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, and 17. CBA. FISH showed that chromothripsis is associated with marker, derivative, and ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%) and influences patient prognosis and disease biology.
Bologna, Via Massarenti,9, 40138 Bologna, The online version of this article has a Supplementary Appendix. BackgroundRecently, in genome-wide analyses of DNA copy number abnormalities using single nucleotide polymorphism microarrays, genetic alterations targeting PAX5 were identified in over 30% of pediatric patients with acute lymphoblastic leukemia. So far the occurrence of PAX5 alterations and their clinical correlation have not been investigated in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Design and MethodsThe aim of this study was to characterize the rearrangements on 9p involving PAX5 and their clinical significance in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Eightynine adults with de novo BCR-ABL1-positive acute lymphoblastic leukemia were enrolled into institutional (n=15) or GIMEMA (Gruppo Italiano Malattie EMatologiche dell'Adulto) (n=74) clinical trials and, after obtaining informed consent, their genome was analyzed by single nucleotide polymorphism arrays (Affymetrix 250K NspI and SNP 6.0), genomic polymerase chain reaction analysis and re-sequencing. ResultsPAX5 genomic deletions were identified in 29 patients (33%) with the extent of deletions ranging from a complete loss of chromosome 9 to the loss of a subset of exons. In contrast to BCR-ABL1-negative acute lymphoblastic leukemia, no point mutations were found, suggesting that deletions are the main mechanism of inactivation of PAX5 in BCR-ABL1-positive acute lymphoblastic leukemia. The deletions were predicted to result in PAX5 haploinsufficiency or expression of PAX5 isoforms with impaired DNA-binding. Deletions of PAX5 were not significantly correlated with overall survival, disease-free survival or cumulative incidence of relapse, suggesting that PAX5 deletions are not associated with outcome. ConclusionsPAX5 deletions are frequent in adult BCR-ABL1-positive acute lymphoblastic leukemia and are not associated with a poor outcome. Key words: ALL, BCR-ABL1, PAX5.Citation: Iacobucci I, Lonetti A, Paoloni F, Papayannidis C, Ferrari A, Storlazzi CT, Vignetti M, Cilloni D, Messa F, Guadagnuolo V, Paolini S, Elia L, Messina M, Vitale A, Meloni G, Soverini S, Pane F, Baccarani M, Foà R, and Martinelli G © F e r r a t a S t o r t i F o u n d a t i o n
Background Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. Methods To understand the molecular bases of aneuploid acute myeloid leukemia (A‐AML), this study examined the genomic profile in 42 A‐AML cases and 35 euploid acute myeloid leukemia (E‐AML) cases. Results A‐AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E‐AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A‐AML, which was associated with a 3‐gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A‐AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E‐AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. Conclusions These findings indicate that aneuploidy‐related and leukemia‐specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.