Volcanic eruptions are foundational events that shape the Earth's surface and provide a window into deep Earth processes. How the primary asthenospheric melts form, pond and ascend through the lithosphere is, however, still poorly understood. We document an on-going magmatic event offshore Mayotte Island (North Mozambique channel), associated with large surface displacements, very low frequency earthquakes and exceptionally deep (25-50 km) seismicity swarms. We present data from the May 2019 MAYOBS1 cruise, which reveal that this event gave birth to a 820m tall, ~ 5 km 3 deepsea volcanic edifice. This is the largest active submarine eruption ever documented. The data indicate that deep magma reservoirs were rapidly drained through dykes that intruded the entire lithosphere and that pre-existing subvertical faults in the mantle were reactivated beneath an ancient caldera structure.
Pore water and sediment geochemistry in the western Black Sea were investigated on long Calypso piston core samples. Using this type of coring device facilitates the recovery of the thick sediment record necessary to analyze transport-reaction processes in response to the postglacial sea-level rise and intrusion of Mediterranean salt water 9 ka ago, and thus, to better characterize key biogeochemical processes and process changes in response to the shift from lacustrine to marine bottom water composition. Complementary data indicate that organic matter degradation occurs in the upper 15 m of the sediment column. However, sulfate reduction coupled with Anaerobic Methane Oxidation (AOM) is the dominant electron-accepting process and characterized by a shallow Sulfate Methane Transition Zone (SMTZ). Net silica dissolution, total alkalinity (TA) maxima and carbonate peaks are found at shallow depths. Pore water profiles clearly show the uptake of K+, Mg2+ and Na + by, and release of Ca2+ and Sr2+ from the heterogeneous lacustrine sediments, which is likely controlled by chemical reactions of silicate minerals and changes in clay mineral composition. Iron (Fe2+) and manganese (Mn2+) maxima largely coincide with Ca2+ peaks and suggest a close link between Fe2+, Mn2+ and Ca2+ release. We hypothesize that the Fe2+ maxima below the SMTZ result from deep Fe3+ reduction linked to organic matter degradation, either driven by DOC escaping from the shallow sulfate reduction zone or slow degradation of recalcitrant POC. The chemical analysis of dissolved and solid iron species indicates that iron is essentially associated with clay minerals, which suggests that microbial iron reduction is influenced by clay mineral composition and bioavailability of clay mineral-bound Fe(III). Overall, our study suggests that postglacial seawater intrusion plays a major role in shaping redox zonation and geochemical profiles in the lacustrine sediments of the Late Quaternary.Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site. Highlights► Geochemical analyses highlight multiple diagenesis processes occurring in the sediment. ► Intense methane seepages and organic matter degradation contribute to the sulfate reduction. ► Chemical of dissolved and mineral iron species indicate that iron is associated with clay minerals. ► In response to seawater intrusion, ion exchange, dissolution and reverse weathering reactions change the composition of clay constituting the sediment.
Volcanic eruptions are foundational events that shape the Earth's surface and provide a window into deep Earth processes. How the primary asthenospheric melts form, pond and ascend through the lithosphere is, however, still poorly understood. We document an ongoing magmatic event offshore Mayotte Island (North Mozambique channel), associated with large surface displacements, very low frequency earthquakes and exceptionally deep (25-50 km) seismicity swarms. We present data from the May 2019 MAYOBS1 cruise, which reveal that this event gave birth to a 820m tall, ~ 5 km 3 deepsea volcanic edifice. This is the largest active submarine eruption ever documented. The data indicate that deep magma reservoirs were rapidly drained through dykes that intruded the entire lithosphere and that pre-existing subvertical faults in the mantle were reactivated beneath an ancient caldera structure.
The Niger Delta is one of the largest hydrocarbon basin offshore Africa and it is well known for the presence of active pockmarks on the seabed. During the Guineco-MeBo cruise in 2011, long cores were taken from a pockmark cluster in order to investigate the state of its current activity. Gas hydrates, oil, and pore-water were sampled for geochemical studies. The resulting dataset combined with seismic data reveal that shallow hydrocarbon migration in the upper sedimentary section was focused exclusively within the pockmarks. There is a clear tendency for gas migration within the hydrate-bearing pockmarks, and oil migration within the carbonate-rich one. This trend is interpreted as a consequence of hydrate dissolution followed by carbonate precipitation in the course of the evolution of these pockmarks. We also demonstrate that Anaerobic Oxidation of Methane (AOM) is the main process responsible for the depletion of pore-water sulfate, with depths of the Sulfate-Methane Transition Zone (SMTZ) ranging between 1.8 and 33.4 m. In addition, a numerical transport-reaction model was used to estimate the age of hydrate-layer formation from the present-day sulfate profiles. The results show that the sampled hydrate-layers were formed between 21 and 3750 years before present. Overall, this work shows the importance of fluid flow on the dynamics of pockmarks, and the investigated cluster offers new opportunities for future cross-site comparison studies. Our results imply that sudden discharges of gas can create hydrate layers within the upper sedimentary column which can affect the seafloor morphology over few decades. Key Points:Seismic surveys and geochemical analyses were combined to study a cluster of hydrate-bearing pockmarks The pockmark dynamics is governed by fluid flow Sulfate-profile simulation allowed estimating the formation age of four selected hydrate layers Supporting Information:Supporting Information S1Correspondence to: L. Ruffine, livio.ruffine@ifremer.fr Citation:de Prunel e, A., et al. (2017), Focused hydrocarbon-migration in shallow sediments of a pockmark cluster in the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.