A study of the self-assembly of 1,4-benzenedimethanethiol (BDMT; HS-CH(2)-(C(6)H(4))-CH(2)-SH) monolayers on gold is presented. Self-assembled monolayers (SAMs) are characterized by reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE) measurements. The ensemble of measurements consistently shows that well-organized BDMT SAMs, with "standing-up" molecules, can be obtained on high quality gold films with incubation in n-hexane provided that N(2)-degassed solutions are used and all preparation steps are performed at 60 degrees C in the absence of ambient light. SE data indicate that the optical interface properties of the BDMT-Au system are different from those of simple alkanethiol SAMs. A possible mechanism for the formation of the "standing-up" phase from the lying-down phase via a hydrogen exchange reaction involving chemisorbed lying-down and free dithiol molecules is discussed.
A comparative study on the adsorption of buthanedithiol (BDT), hexanedithiol (HDT), and nonanedithiol (NDT) on Au(111) from ethanolic and n-hexane solutions and two different preparation procedures is presented. SAM characterization is based on reflection-absorption infrared spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, and time of flight direct recoil spectroscopy. Results indicate that one can obtain a standing-up phase of dithiols and that the amount of the precursor lying-down phase decreases from BDT to NDT, irrespective of the solvent and self-assembly conditions. A good ordering of the hydrocarbon chains in the standing-up configuration is observed for HDT and NDT when the system is prepared in degassed n-hexane with all operations carried out in the dark. Disulfide bridges at the free SH terminal groups are formed for HDT and to a lesser extent for NDT prepared in ethanol in the presence of oxygen, but we found no evidence of ordered multilayer formation in our experiments. No disulfides were observed for BDT that only forms the lying-down phase. Our results demonstrate the key role of the chain length and the procedure (solvent nature and oxygen presence) in controlling the surface structure and chemistry of SAMs dithiols on Au(111).
We report a study of the self-assembly of 1,4-benzenedimethanethiol monolayers on gold formed in n-hexane solution held at 60 °C for 30 min and in dark conditions. The valence band characteristics, the thickness of the layer, and the orientation of the molecules were analyzed at a synchrotron using high resolution photoelectron spectroscopy and near edge X-ray adsorption spectroscopy. These measurements unambiguously attest the formation of a single layer with molecules arranged in the upright position and presenting a free -SH group at the outer interface. Near edge X-ray absorption fine structure (NEXAFS) measurements suggest that the molecular axis is oriented at 24° with respect to the surface normal. In addition, valence band features could be successfully associated to specific molecular orbital contributions thanks to the comparison with theoretically calculated density of states projected on the different molecular units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.