BackgroundIn this study, we characterised the microbiota present in the faeces of 15- and 46-week-old egg laying hens before and after tetracycline or streptomycin therapy. In the first experiment, the layers were subjected to 7 days of therapy. In the second experiment, the hens were subjected to two days of therapy, which was repeated for an additional two days after 12 days of antibiotic withdrawal. This enabled us to characterise dynamics of the changes after antibiotic administration and withdrawal, and to identify genera repeatedly resistant to tetracycline and streptomycin.ResultsReal-time PCRs specific for Enterobacteriales, Lactobacillales, Clostridiales and Bifidobacteriales showed that changes in the microbiota in response to antibiotic therapy and antibiotic withdrawal were quite rapid and could be observed within 24 hours after the change in therapy status. Pyrosequencing of PCR amplified V3/V4 variable regions of 16S rRNA genes showed that representatives of the orders Clostridiales, Lactobacillales, Bacteroidales, Bifidobacteriales, Enterobacteriales, Erysipelotrichales, Coriobacteriales, Desulfovibrionales, Burkholderiales, Campylobacterales and Actinomycetales were detected in the faeces of hens prior to the antibiotic therapy. Tetracycline and streptomycin therapies decreased the prevalence of Bifidobacteriales, Bacteroidales, Clostridiales, Desulfovibrionales, Burkholderiales and Campylobacterales in faecal samples in both experiments. On the other hand, Enterobacteriales and Lactobacillales always increased in prevalence in response to both therapies. Within the latter two orders, Escherichia and Enterococcus were the genera prevalence of which increased after all the antibiotic treatments.ConclusionsThe changes in microbiota composition induced by the antibiotic therapy were rapid and quite dramatic and only representatives of the genera Enterococcus and Escherichia increased in response to the therapy with both antibiotics in both experiments.
The characterization of the immune response of chickens to Salmonella infection is usually limited to the quantification of expression of genes coding for cytokines, chemokines or antimicrobial peptides. However, processes occurring in the cecum of infected chickens are likely to be much more diverse. In this study we have therefore characterized the transcriptome and proteome in the chicken cecum after infection with Salmonella Enteritidis. Using a combination of 454 pyrosequencing, protein mass spectrometry and quantitative real-time PCR, we identified 48 down- and 56 up-regulated chicken genes after Salmonella Enteritidis infection. The most inducible gene was that coding for MMP7, exhibiting a 5952 fold induction 9 days post-infection. An induction of greater than 100 fold was observed for IgG, IRG1, SAA, ExFABP, IL-22, TRAP6, MRP126, IFNγ, iNOS, ES1, IL-1β, LYG2, IFIT5, IL-17, AVD, AH221 and SERPIN B. Since prostaglandin D2 synthase was upregulated and degrading hydroxyprostaglandin dehydrogenase was downregulated after the infection, prostaglandin must accumulate in the cecum of chickens infected with Salmonella Enteritidis. Finally, above mentioned signaling was dependent on the presence of a SPI1-encoded type III secretion system in Salmonella Enteritidis. The inflammation lasted for 2 weeks after which time the expression of the “inflammatory” genes returned back to basal levels and, instead, the expression of IgA and IgG increased. This points to an important role for immunoglobulins in the restoration of homeostasis in the cecum after infection.
A total of 669 individual cow milk samples originating from asymptomatic cows from 16 dairy farms were examined for the presence of microorganisms with the potential to cause mastitis. Coagulase-negative staphylococci clearly predominated (53.5% positive samples) followed by streptococci and enterococci (both occurring in 16.1% samples). Among streptococci, so-called mastitis streptococci (S. uberis, S. dysgalactiae and S. agalactiae) prevailed (11.7% positive samples). Enterobacteriaceae were found in 10.0% samples, most of which (6.6% samples) were positive for Escherichia coli. Yeasts (mainly Candida spp.) were found in 8.2% samples. One of the major mastitis pathogens, Staphylococcus aureus subsp. aureus, was isolated from 9.0% of samples. S. aureus isolates were further characterised in terms of their capability to form biofilm, antimicrobial susceptibility and clonality (PFGE). All S. aureus isolates were capable of biofilm formation and were generally susceptible to the majority of tested antibiotics. The exception was ampicillin, resistance to which was observed in 27.7% isolates. Therefore, the relatively frequent occurrence of S. aureus could be attributed to persistent intramammary infections due to biofilm formation rather than low efficacy of particular antibiotics. PFGE analysis revealed clonal spread of certain S. aureus isolates within and between farms indicating that certain lineages of S. aureus mastitis strains are particularly successful.
Poultry meat is the most common protein source of animal origin for humans. However, intensive breeding of animals in confined spaces has led to poultry colonisation by microbiota with a zoonotic potential or encoding antibiotic resistances. In this study we were therefore interested in the prevalence of selected antibiotic resistance genes and microbiota composition in feces of egg laying hens and broilers originating from 4 different Central European countries determined by real-time PCR and 16S rRNA gene pyrosequencing, respectively. strA gene was present in 1 out of 10,000 bacteria. The prevalence of sul1, sul2 and tet(B) in poultry microbiota was approx. 6 times lower than that of the strA gene. tet(A) and cat were the least prevalent being present in around 3 out of 10,000,000 bacteria forming fecal microbiome. The core chicken fecal microbiota was formed by 26 different families. Rather unexpectedly, representatives of Desulfovibrionaceae and Campylobacteraceae, both capable of hydrogen utilisation in complex microbial communities, belonged among core microbiota families. Understanding the roles of individual population members in the total metabolism of the complex community may allow for interventions which might result in the replacement of Campylobacteraceae with Desulfovibrionaceae and a reduction of Campylobacter colonisation in broilers, carcasses, and consequently poultry meat products.
Chicks in commercial production are highly sensitive to enteric infections and their resistance can be increased by administration of complex adult microbiota. However, it is not known which adult microbiota members are capable of colonising the caecum of newly hatched chicks. In this study, we therefore orally inoculated chicks with pure cultures of 76 different bacterial isolates originating from chicken caecum on day 1 of life and determined their ability to colonise seven days later. The caecum of newly hatched chickens could be colonised by bacteria belonging to phyla Bacteroidetes, Proteobacteria, Synergistetes, or Verrucomicrobia, and isolates from class Negativicutes (phylum Firmicutes). On the other hand, we did not record colonisation with isolates from phyla Actinobacteria and Firmicutes (except for Negativicutes), including isolates from families Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Lactobacillaceae. Representatives of genera commonly used in probiotics such as Lactobacillus, Enterococcus, or Bacillus therefore did not colonise the chicken intestinal tract after a single dose administration. Following challenge with Salmonella enterica serovar Enteritidis, the best protecting isolates increased the chicken's resistance to S. Enteritidis only tenfold, which, however, means that none of the tested individual bacterial isolates on their own efficiently protected chicks against S. Enteritidis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.