Previous phase I studies demonstrated safety and some beneficial effects of mesenchymal stem cells (MSCs) in patients with mild to moderate idiopathic pulmonary fibrosis (IPF). The aim of our study was to evaluate the safety, tolerability, and efficacy of a high cumulative dose of bone marrow MSCs in patients with rapid progressive course of severe to moderate IPF. Twenty patients with forced ventilation capacity (FVC) ≥40% and diffusing capacity of the lung for carbon monoxide (DLCO) ≥20% with a decline of both >10% over the previous 12 months were randomized into two groups: one group received two intravenous doses of allogeneic MSCs (2 × 10 8 cells) every 3 months, and the second group received a placebo. A total amount of 1.6 × 10 9 MSCs had been administered to each patient after the study completion. There were no significant adverse effects after administration of MSCs in any patients. In the group of MSC therapy, we observed significantly better improvement for the 6-minute walk distance in 13 weeks, for DLCO in 26 weeks, and for FVC in 39 weeks compared with placebo.FVC for 12 months in the MSCs therapy group increased by 7.8% from baseline, whereas it declined by 5.9% in the placebo group. We did not find differences between the groups in mortality (two patients died in each group) or any changes in the high-resolution computed tomography fibrosis score. In patients with IPF and a rapid pulmonary function decline, therapy with high doses of allogeneic MSCs is a safe and promising method to reduce disease progression.
Objectives To predict the spread of coronavirus disease (COVID‐19), information regarding the immunological memory for disease‐specific antigens is necessary. The possibility of reinfection, as well as the efficacy of vaccines for COVID‐19 that are currently under development, will largely depend on the quality and longevity of immunological memory in patients. To elucidate the process of humoral immunity development, we analysed the generation of plasmablasts and virus receptor‐binding domain (RBD)‐specific memory B (Bmem) cells in patients during the acute phase of COVID‐19. Methods The frequencies of RBD‐binding plasmablasts and RBD‐specific antibody‐secreting cells (ASCs) in the peripheral blood samples collected from patients with COVID‐19 were measured using flow cytometry and the ELISpot assay. Results The acute phase of COVID‐19 was characterised by the transient appearance of total as well as RBD‐binding plasmablasts. ELISpot analysis indicated that most patients exhibited a spontaneous secretion of RBD‐specific ASCs in the circulation with good correlation between the IgG and IgM subsets. IL‐21/CD40L stimulation of purified B cells induced the activation and proliferation of Bmem cells, which led to the generation of plasmablast phenotypic cells as well as RBD‐specific ASCs. No correlation was observed between the frequency of Bmem cell‐derived and spontaneous ASCs, suggesting that the two types of ASCs were weakly associated with each other. Conclusion Our findings reveal that SARS‐CoV‐2‐specific Bmem cells are generated during the acute phase of COVID‐19. These findings can serve as a basis for further studies on the longevity of SARS‐CoV‐2‐specific B‐cell memory.
Background Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX). Methods In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung–Knapp–Sidik–Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. Results A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. Conclusions Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care.
In the absence of virus-targeting small-molecule drugs approved for the treatment and prevention of COVID-19, broadening the repertoire of potent SARS-CoV-2-neutralizing antibodies represents an important area of research in response to the ongoing pandemic. Systematic analysis of such antibodies and their combinations can be particularly instrumental for identification of candidates that may prove resistant to the emerging viral escape variants. Here, we isolated a panel of 23 RBD-specific human monoclonal antibodies from the B cells of convalescent patients. A surprisingly large proportion of such antibodies displayed potent virus-neutralizing activity both in vitro and in vivo. Four of the isolated nAbs can be categorized as ultrapotent with an apparent IC100 below 16 ng/mL. We show that individual nAbs as well as dual combinations thereof retain activity against currently circulating SARS-CoV-2 variants of concern (such as B.1.1.7, B.1.351, B.1.617, and C.37), as well as against other viral variants. When used as a prophylactics or therapeutics, these nAbs could potently suppress viral replication and prevent lung pathology in SARS-CoV-2-infected hamsters. Our data contribute to the rational development of oligoclonal therapeutic nAb cocktails mitigating the risk of SARS-CoV-2 escape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.