Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts of insulin in response to glucose. This results in hyperglycemia and metabolic dysregulation. Evidence has recently been mounting that mitochondrial dysfunction plays an important role in these processes. Monogenic dysfunction of mitochondria is a rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted. We argue that alterations in mitochondria may be a culprit in the pathogenetic processes culminating in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.