Terrestrial plants can internalize and translocate nanoparticles (NPs). However, direct evidence for the processes driving the NP uptake and distribution in plants is scarce at the cellular level. Here, NP-root interactions were investigated after 10 days of exposure of Arabidopsis thaliana to 10 mg·L of negatively or positively charged gold NPs (∼12 nm) in gels. Two complementary imaging tools were used: X-ray computed nanotomography (nano-CT) and enhanced dark-field microscopy combined with hyperspectral imaging (DF-HSI). The use of these emerging techniques improved our ability to detect and visualize NP in plant tissue: by spectral confirmation via DF-HSI, and in three dimensions via nano-CT. The resulting imaging provides direct evidence that detaching border-like cells (i.e., sheets of border cells detaching from the root) and associated mucilage can accumulate and trap NPs irrespective of particle charge. On the contrary, border cells on the root cap behaved in a charge-specific fashion: positively charged NPs induced a higher mucilage production and adsorbed to it, which prevented translocation into the root tissue. Negatively charged NPs did not adsorb to the mucilage and were able to translocate into the apoplast. These observations provide direct mechanistic insight into NP-plant interactions, and reveal the important function of border cells and mucilage in interactions of plants with charged NPs.
The role of silicon (Si) in alleviating biotic and abiotic stresses in crops is well evidenced by empirical studies; however, the mechanisms by which it works are still poorly known. The aim of this study is to determine whether or not phytolith composition and distribution in wheat are affected by drought and, if so, why. Durum wheat was grown using hydroponics in the presence of polyethylene glycol (PEG)-6000 to perform a water-stress simulation. We developed an original method for in situ analysis of phytoliths in leaves via X-ray imaging. PEG was efficient in inhibiting water uptake by roots and creating stress, and prevented a small fraction of Si from being accumulated in the shoots. The application of Si with PEG maintained shoot and root fresh weights (FW) and relative water content at higher values than for plants without Si, especially at PEG 12%. Our data show that, under water stress in the presence of Si, accumulation of phytoliths over the veins provides better support to the leaf, thus allowing for a better development of the whole plant than in the absence of Si. The development of silicified trichomes in durum wheat depends primarily on the availability of Si in soil and is not an adaptation to water stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.