5-(Hydroxymethyl)furfural (HMF) and levulinic acid production from glucose in a cascade of reactions using a Lewis acid (CrCl3) catalyst together with a Brønsted acid (HCl) catalyst in aqueous media is investigated. It is shown that CrCl3 is an active Lewis acid catalyst in glucose isomerization to fructose, and the combined Lewis and Brønsted acid catalysts perform the isomerization and dehydration/rehydration reactions. A CrCl3 speciation model in conjunction with kinetics results indicates that the hydrolyzed Cr(III) complex [Cr(H2O)5OH](2+) is the most active Cr species in glucose isomerization and probably acts as a Lewis acid-Brønsted base bifunctional site. Extended X-ray absorption fine structure spectroscopy and Car-Parrinello molecular dynamics simulations indicate a strong interaction between the Cr cation and the glucose molecule whereby some water molecules are displaced from the first coordination sphere of Cr by the glucose to enable ring-opening and isomerization of glucose. Additionally, complex interactions between the two catalysts are revealed: Brønsted acidity retards aldose-to-ketose isomerization by decreasing the equilibrium concentration of [Cr(H2O)5OH](2+). In contrast, Lewis acidity increases the overall rate of consumption of fructose and HMF compared to Brønsted acid catalysis by promoting side reactions. Even in the absence of HCl, hydrolysis of Cr(III) decreases the solution pH, and this intrinsic Brønsted acidity drives the dehydration and rehydration reactions. Yields of 46% levulinic acid in a single phase and 59% HMF in a biphasic system have been achieved at moderate temperatures by combining CrCl3 and HCl.
Coupling ATR-FTIR spectroscopy, Scanning Electron Microscopy and Dynamic Light Scattering to understand the formation of 5-hydroxymethylfurfural (HMF) derived humins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.