Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water ContentTemperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low) IWCs are found together with high (low) ice crystal concentrations N ice .An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus) and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets -liquid origin cirrus), which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K). In the European field campaigns, slow updraft in situ origin cirrus occur frequently in low-and high-pressure systems, while fast updraft in situ cirrus appear in conjunction with jet streams or gravity waves. Also, liquid origin cirrus mostly related to warm conveyor belts are found. In the US and tropical campaigns, thick liquid origin cirrus which are formed in large convective systems are detected more frequently.
The effect of organic coating on the heterogeneous ice nucleation (IN) efficiency of dust particles was investigated at simulated cirrus cloud conditions in the AIDA cloud chamber of Forschungszentrum Karlsruhe. Arizona test dust (ATD) and the clay mineral illite were used as surrogates for atmospheric dust aerosols. The dry dust samples were dispersed into a 3.7 m 3 aerosol vessel and either directly transferred into the 84 m 3 cloud simulation chamber or coated before with the semi-volatile products from the reaction of α-pinene with ozone in order to mimic the coating of atmospheric dust particles with secondary organic aerosol (SOA) substances. The ice-active fraction was measured in AIDA expansion cooling experiments as a function of the relative humidity with respect to ice, RHi, in the temperature range from 205 to 210 K. Almost all uncoated dust particles with diameters between 0.1 and 1.0 μm acted as efficient deposition mode ice nuclei at RHi between 105 and 120%. This high ice nucleation efficiency was markedly suppressed by coating with SOA. About 20% of the ATD particles coated with a SOA mass fraction of 17 wt% were ice-active at RHi between 115 and 130%, and only 10% of the illite particles coated with an SOA mass fraction of 41 wt% were ice-active at RHi between 160 and 170%. Only a minor fraction of pure SOA particles were ice-active at RHi between 150 and 190%. Strong IN activation of SOA particles was observed only at RHi above 200%, which is clearly above water saturation at the given temperature. The IN suppression and the shift of the heterogeneous IN onset to higher RHi seem to depend on the coating thickness or the fractional surface coverage of the mineral particles. The results indicate that the heterogeneous ice nucleation potential of atmospheric mineral particles may also be suppressed if they are coated with secondary organics.
[1] The low-temperature aerosol and cloud chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) of Forschungszentrum Karlsruhe was used to investigate the effect of sulfuric acid coating on the ice nucleation efficiency of soot aerosol particles from a spark discharge generator. The uncoated (sulfuric acid-coated) soot aerosol showed a nearly lognormal size distribution with number concentrations of 300-5000 cm À3 (2500-56,000 cm À3 ), count median diameters of 70-140 nm (90-200 nm), and geometric standard deviation of 1.3-1.4 (1.5-1.6). The volume fraction of the sulfuric acid coating to the total aerosol volume concentration ranged from 21 to 81%. Ice activation was investigated in dynamic expansion experiments simulating cloud cooling rates between about À0.6 and À3.5 K min À1. At temperatures between 186 and $235 K, uncoated soot particles acted as deposition nuclei at very low ice saturation ratios between 1.1 and 1.3. Above 235 K, ice nucleation only occurred after approaching liquid saturation. Coating with sulfuric acid significantly increased the ice nucleation thresholds of soot aerosol to saturation ratios increasing from $1.3 at 230 K to $1.5 at 185 K. This immersion mode of freezing nucleates ice well below the thresholds for homogeneous freezing of pure sulfuric acid solution droplets measured in previous AIDA experiments. A case study indicated that in contrast to the homogeneous freezing the nucleation rate of the immersion freezing mechanism depends only weakly on relative humidity and thereby the solute concentration. These results show that it is important to know the mixing state of soot and sulfuric acid aerosol particles in order to properly assess their role in cirrus formation. Citation: Möhler, O., et al. (2005), Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.