NMDA receptor antagonists can induce a schizophrenia-like psychosis, but the role of NMDA receptors in the pathophysiology of schizophrenia remains unclear. Expression patterns of mRNAs for five NMDA receptor subunits (NR1/NR2A-D) were determined by in situ hybridization in prefrontal, parieto-temporal, and cerebellar cortex of brains from schizophrenics and from neuroleptic-treated and nonmedicated controls. In the cerebral cortex of both schizophrenics and controls, mRNAs for NR1, NR2A, NR2B, and NR2D subunits were preferentially expressed in layers II/III, Va, and VIa, with much higher levels in the prefrontal than in the parieto-temporal cortex. Levels of mRNA for the NR2C subunit were very low overall. By contrast, the cerebellar cortex of both schizophrenics and controls contained very high levels of NR2C subunit mRNA, whereas levels for the other subunit mRNAs were very low, except NR1, for which levels were moderate. Significant alterations in the schizophrenic cohort were confined to the prefrontal cortex. Here there was a shift in the relative proportions of mRNAs for the NR2 subunit family, with a 53% relative increase in expression of the NR2D subunit mRNA. No comparable changes were found in neuroleptic-treated or untreated controls. These findings indicate regional heterogeneity of NMDA receptor subunit expression in human cerebral and cerebellar cortex. In schizophrenics, the alterations in expression of NR2 subunit mRNA in prefrontal cortex are potential indicators of deficits in NMDA receptor-mediated neurotransmission accompanying functional hypoactivity of the frontal lobes.
The small-conductance calcium-activated K þ channel SK3 (SKCa3/KCNN3) regulates electrical excitability and neurotransmitter release in monoaminergic neurons, and has been implicated in schizophrenia, ataxia and anorexia nervosa. We have identified a novel SK3 transcript, SK3-1B that utilizes an alternative first exon (exon 1B), but is otherwise identical to SK3. SK3-1B, mRNA is widely distributed in human tissues and is present at 20-60% of SK3 in the brain. The SK3-1B protein lacks the N-terminus and first transmembrane segment, and begins eight residues upstream of the second transmembrane segment. When expressed alone, SK3-1B did not produce functional channels, but selectively suppressed endogenous SK3 currents in the pheochromocytoma cell line, PC12, in a dominant-negative fashion. This dominant inhibitory effect extended to other members of the SK subfamily, but not to voltage-gated K þ channels, and appears to be due to intracellular trapping of endogenous SK channels. The effect of SK3-1B expression is very similar to that produced by expression of the rare SK3 truncation allele, SK3-D, found in a patient with schizophrenia. Regulation of SK3 and SK3-1B levels may provide a potent mechanism to titrate neuronal firing rates and neurotransmitter release in monoaminergic neurons, and alterations in the relative abundance of these proteins could contribute to abnormal neuronal excitability, and to the pathogenesis of schizophrenia.
Huntington's disease (HD), a progressive neurodegenerative disease, is caused by an expanded CAG triplet repeat producing a mutant huntingtin protein (mHTT) with a polyglutamine-repeat expansion. Onset of symptoms in mutant huntingtin gene-carrying individuals remains unpredictable. We report that synthetic polyglutamine oligomers and cerebrospinal fluid (CSF) from BACHD transgenic rats and from human HD subjects can seed mutant huntingtin aggregation in a cell model and its cell lysate. Our studies demonstrate that seeding requires the mutant huntingtin template and may reflect an underlying prion-like protein propagation mechanism. Light and cryo-electron microscopy show that synthetic seeds nucleate and enhance mutant huntingtin aggregation. This seeding assay distinguishes HD subjects from healthy and non-HD dementia controls without overlap (blinded samples). Ultimately, this seeding property in HD patient CSF may form the basis of a molecular biomarker assay to monitor HD and evaluate therapies that target mHTT.
Concentrations of norepinephrine in cerebrospinal fluid are higher in schizophrenic patients, particularly in those with paranoid features, than in normal volunteer subjects of the same age. This observation supports recent reports of elevated concentrations of norepinephrine in specific brain areas adjacent to the cerebral ventricles of paranoid schizophrenic patients. Overflow of the amine from periventricular regions into the cerebrospinal fluid may reflect abnormally high release or diminished enzymatic destruction of norepinephrine in patients with schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.