The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of "benchmark" models, including CP-conserving and CP-violating scenarios. These interpretations lead in all cases to large exclusions in the MSSM parameter space. Absolute limits are set on the parameter tan β and, in some scenarios, on the masses of neutral Higgs bosons.
Search for high-mass dilepton resonances using139 fb −1 of p p collision data collected at √ s = 13 TeV with the ATLAS detectorThe ATLAS Collaboration A search for high-mass dielectron and dimuon resonances in the mass range of 250 GeV to 6 TeV is presented. The data were recorded by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of √ s = 13 TeV during Run 2 of the Large Hadron Collider and correspond to an integrated luminosity of 139 fb −1 . A functional form is fitted to the dilepton invariant-mass distribution to model the contribution from background processes, and a generic signal shape is used to determine the significance of observed deviations from this background estimate. No significant deviation is observed and upper limits are placed at the 95% confidence level on the fiducial cross-section times branching ratio for various resonance width hypotheses. The derived limits are shown to be applicable to spin-0, spin-1 and spin-2 signal hypotheses. For a set of benchmark models, the limits are converted into lower limits on the resonance mass and reach 4.5 TeV for the E 6 -motivated Z ψ boson. Also presented are limits on Heavy Vector Triplet model couplings.ATLAS [14-16] is a multipurpose detector with a forward-backward symmetric cylindrical geometry with respect to the LHC beam axis.1 The innermost layers consist of tracking detectors in the pseudorapidity range |η| < 2.5. This inner detector (ID) is surrounded by a thin superconducting solenoid that provides a 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of ∆R ≡ (∆η) 2 + (∆φ) 2 .
We report a measurement of the mass of the top quark in lepton+jets final states of pp →tt data corresponding to 2.6 fb −1 of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider. A matrix-element method is developed that combines an in situ jet energy calibration with our standard jet energy scale derived from studies of γ+jet and dijet events. We then implement a flavor-dependent jet response correction through a novel approach. This method is used to measure a top-quark mass of mt = 176.01 ± 1.64 GeV. Combining this result with our previous result obtained on an independent data set, we measure a top-quark mass of mt = 174.94 ± 1.49 GeV for a total integrated luminosity of 3.6 fb −1 .
Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at √ s = 13 TeV with the ATLAS detectorThe ATLAS Collaboration Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb −1 at a centre-of-mass energy √ s = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extradimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model. c 2017 CERN for the benefit of the ATLAS Collaboration. 1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The transverse energy is defined as3 Simulated Monte Carlo (MC) events are used for optimizing the search strategy [23], and for the signal and background modelling studies detailed in Sections 5 and 6, respectively. Interference effects between the resonant signal and the background processes are neglected.The spin-0 signal MC samples were generated using the effective-field-theory approach implemented in MadGraph5_aMC@NLO [24] version 2.3.3 at next-to-leading order (NLO) in quantum chromodynamics (QCD). From the Higgs characterization framework [25], CP-even dimension-five operators coupling the new resonance to gluons and photons were included. Samples were generated with the NNPDF3.0 NLO parton distribution functions (PDFs) [26], using the A14 set of tuned parameters (tune) of Pythia 8.186 [27,28] for the parton-shower and hadronization simulation. Simulated samples were produced for fixed values of the mass and width of the assumed resonance, spanning the range 200-2400 GeV for the mass, and the range from 4 MeV to 10% of the mass for the decay width. Choosing an improved signal model with an event generator different from the one used in Ref.[1] provides a description of the signal which is less sensitive to modelling effects from the off-shell region. The impact of this change is only visible in scenarios with a large signal decay width, with mass values at the TeV scale.Spin-2 signal samples for the RS1 model were generated using Pythia 8.186, with the NNPDF23LO PDF set [29] and the A1...
A search for long-lived, massive particles predicted by many theories beyond the Standard Model is presented. The search targets final states with large missing transverse momentum and at least one highmass displaced vertex with five or more tracks, and uses 32.8 fb −1 of ffiffi ffi s p ¼ 13 TeV pp collision data collected by the ATLAS detector at the LHC. The observed yield is consistent with the expected background. The results are used to extract 95% C.L. exclusion limits on the production of long-lived gluinos with masses up to 2.37 TeV and lifetimes of Oð10 −2 Þ − Oð10Þ ns in a simplified model inspired by split supersymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.