We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1 -1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.
ERL R&D PROGRAM AT BNLThe ERL R&D program is pursued by the Collider Accelerator Department at BNL as an important stepping-stone for a 10-fold increase of the luminosity of the Relativistic Heavy Ion Collider (RHIC) [1] using relativistic electron cooling [2] of gold ion beams with energy of 100 GeV per nucleon. Furthermore, the ERL R&D program extends toward the possibility of using 10-20 GeV ERL for a future electron-hadron/heavy ion collider, eRHIC [3]. Fig.1 The layout of the R&D ERL facility in the bay of Bldg. 912 at BNL. The bay is equipped with an overhead crane. The facility has a control room, two service rooms and a shielded ERL cave. The control room is located outside of the bay in a separate building. The single story house is used for a high voltage power supply for 1 MW klystron. The two-story unit houses a laser room, the CW 1 MW klystron with its accessories, most of the power supplies and electronics
Next generation light-sources, electron coolers, highpower FELs, Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laserphotocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.
A key technology issue of energy recovery linac (ERL) devices for high-power free-electron laser (FEL) and fourth generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Three ongoing programs that target up to 0.5 Ampere photocathode injector performance with required EFU brightness, are described. The first is a DC gun and superconducting RF (SRF) booster cryomodule. Such a 748.5 MHz device is being assembled and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility (JLAB) beginning in 2006. The second approach is a high-current normal-conducting RF (NCRF) injector. A 700 MHz gun will undergo thermal test in late 2005 at the Los Alamos National Laboratory (LANL), which when equipped with a suitable cathode, would be capable of exceeding 0.5 Ampere operation. Finally, a half-cell 703.75 MHz SRF gun with a diamond amplifier and other cathodes, will be tested to 0.5 Ampere at the Brookhaven National Laboratory (BNL) in 2007. The status and projected performance for each of these injector projects is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.