We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg 2 of griz imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while "blind" to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat ΛCDM and wCDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for ΛCDM) or 7 (for wCDM) cosmological parameters including the neutrino mass density and including the 457 × 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain S8 ≡ σ8(Ωm/0.3) 0.5 = 0.773 +0.026 −0.020 and Ωm = 0.267 +0.030 −0.017 for ΛCDM; for wCDM, we find S8 = 0.782 +0.036 −0.024 , Ωm = 0.284 +0.033 −0.030 , and w = −0.82 +0.
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder': the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.
We analyse the physical properties of a large, homogeneously selected sample of ALMA-located sub-millimetre galaxies (SMGs) detected in the SCUBA-2 Cosmology Legacy Survey 850-µm map of the UKIDSS/UDS field. This survey, AS2UDS, identified 707 SMGs across the ∼ 1 deg 2 field, including ∼17 per cent which are undetected in the optical/near-infrared to K 25.7 mag. We interpret the UV-to-radio data of these systems using a physically motivated model, magphys and determine a median photometric redshift of z = 2.61±0.08, with a 68 th percentile range of z = 1.8-3.4, with just ∼ 6 per cent at z > 4. The redshift distribution is well fit by a model combining evolution of the gas fraction in halos with the growth of halo mass past a critical threshold of ∼4×10 12 M , thus SMGs may represent the highly efficient collapse of gasrich massive halos. Our survey provides a sample of the most massive, dusty galaxies at z 1, with median dust and stellar masses of M d = (6.8±0.3) × 10 8 M (thus, gas masses of ∼ 10 11 M ) and M * = (1.26±0.05) × 10 11 M . These galaxies have gas fractions of f gas = 0.41±0.02 with depletion timescales of ∼ 150 Myr. The gas mass function evolution of our sample at high masses is consistent with constraints at lower masses from blind CO-surveys, with an increase to z ∼ 2-3 and then a decline at higher redshifts. The space density and masses of SMGs suggests that almost all galaxies with M * 2 × 10 11 M have passed through an SMG-like phase. We find no evolution in dust temperature at a constant far-infrared luminosity across z ∼ 1.5-4. We exploit dust continuum sizes to show that SMGs appear to behave as simple homologous systems in the far-infrared, having properties consistent with a centrally illuminated starburst. Our study provides strong support for an evolutionary link between the active, gas-rich SMG population at z > 1 and the formation of massive, bulge-dominated galaxies across the history of the Universe.
We use 26 × 10 6 galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg 2 of the sky to produce the most significant measurement of cosmic shear in a galaxy survey to date. We constrain cosmological parameters in both the flat ΛCDM and the wCDM models, while also varying the neutrino mass density. These results are shown to be robust using two independent shape catalogs, two independent photo-z calibration methods, and two independent analysis pipelines in a blind analysis. We find a 3.5% fractional uncertainty on σ 8 ðΩ m =0.3Þ 0.5 ¼ 0.782 −0.39 . We find results that are consistent with previous cosmic shear constraints in σ 8 -Ω m , and we see no evidence for disagreement of our weak lensing data with data from the cosmic microwave background. Finally, we find no evidence preferring a wCDM model allowing w ≠ −1. We expect further significant improvements with subsequent years of DES data, which will more than triple the sky coverage of our shape catalogs and double the effective integrated exposure time per galaxy.
We measure new estimates for the galaxy stellar mass function and star formation rates for samples of galaxies at z ∼ 4, 5, 6 & 7 using data in the CANDELS GOODS South field. The deep near-infrared observations allow us to construct the stellar mass function at z 6 directly for the first time. We estimate stellar masses for our sample by fitting the observed spectral energy distributions with synthetic stellar populations, including nebular line and continuum emission. The observed UV luminosity functions for the samples are consistent with previous observations, however we find that the observed M U V -M * relation has a shallow slope more consistent with a constant mass to light ratio and a normalisation which evolves with redshift. Our stellar mass functions have steep low-mass slopes (α ≈ −1.9), steeper than previously observed at these redshifts and closer to that of the UV luminosity function. Integrating our new mass functions, we find the observed stellar mass density evolves from log 10 ρ * = 6.64 +0.58 −0.89 at z ∼ 7 to 7.36 ± 0.06 M Mpc −3 at z ∼ 4. Finally, combining the measured UV continuum slopes (β) with their rest-frame UV luminosities, we calculate dust corrected star-formation rates (SFR) for our sample. We find the specific star-formation rate for a fixed stellar mass increases with redshift whilst the global SFR density falls rapidly over this period. Our new SFR density estimates are higher than previously observed at this redshift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.