MRI studies of the knee were performed at intervals between full extension and 120 degrees of flexion in six cadavers and also non-weight-bearing and weight-bearing in five volunteers. At each interval sagittal images were obtained through both compartments on which the position of the femoral condyle, identified by the centre of its posterior circular surface which is termed the flexion facet centre (FFC), and the point of closest approximation between the femoral and tibial subchondral plates, the contact point (CP), were identified relative to the posterior tibial cortex. The movements of the CP and FFC were essentially the same in the three groups but in all three the medial differed from the lateral compartment and the movement of the FFC differed from that of the CR Medially from 30 degrees to 120 degrees the FFC and CP coincided and did not move anteroposteriorly. From 30 degrees to 0 degrees the anteroposterior position of the FFC remained unchanged but the CP moved forwards by about 15 mm. Laterally, the FFC and the CP moved backwards together by about 15 mm from 20 degrees to 120 degrees. From 20 degrees to full extension both the FFC and CP moved forwards, but the latter moved more than the former. The differences between the movements of the FFC and the CP could be explained by the sagittal shapes of the bones, especially anteriorly. The term 'roll-back' can be applied to solid bodies, e.g. the condyles, but not to areas. The lateral femoral condyle does roll-back with flexion but the medial does not, i.e. the femur rotates externally around a medial centre. By contrast, both the medial and lateral contact points move back, roughly in parallel, from 0 degrees to 120 degrees but they cannot 'roll'. Femoral roll-back with flexion, usually imagined as backward rolling of both condyles, does not occur.
Posterior cruciate ligament rupture alters the kinematics of the medial compartment of the knee, resulting in "fixed" anterior subluxation of the medial femoral condyle (posterior subluxation of the medial tibial plateau). This study helps to explain the observation of increased incidence of osteoarthritis in the medial compartment, and specifically the femoral condyle, in posterior cruciate ligament-deficient knees.
W e present the first study in vivo of meniscal movement in normal knees under load. Using an open MR scanner, allowing imaging in physiological positions in near to real-time, 16 young footballers were scanned moving from full extension to 90°fl exion in the sagittal and coronal planes. Excursion of the meniscal horns, radial displacement and meniscal height were measured. On weight-bearing, the anterior horn of the medial meniscus moves through a mean of 7.1 mm and the posterior horn through 3.9 mm, with 3.6 mm of mediolateral radial displacement. The height of the anterior horn increases by 2.6 mm and that of the posterior horn by 2.0 mm. The anterior horn of the lateral meniscus moves 9.5 mm and the posterior horn 5.6 mm, with 3.7 mm of radial displacement. The height of the anterior horn increases by 4.0 mm, and that of the posterior horn by 2.4 mm. In non-weight-bearing, the anterior horn of the medial meniscus moves 5.4 mm and the posterior horn 3.8 mm, with 3.3 mm of radial displacement. The anterior horn of the lateral meniscus moves 6.3 mm, and the posterior horn 4.0 mm, with 3.4 mm of radial displacement. The most significant differences between weight-bearing and non-weight-bearing were the movement and vertical height of the anterior horn of the lateral meniscus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.