We have discovered a new, ultrafast therapy for treating skin cancer that is extremely effective with a total electric field exposure time of only 180 lsec. The application of 300 high-voltage (40 kV/ cm), ultrashort (300 nsec) electrical pulses to murine melanomas in vivo triggers both necrosis and apoptosis, resulting in complete tumor remission within an average of 47 days in the 17 animals treated. None of these melanomas recurred during a 4-month period after the initial melanoma had disappeared. These pulses generate small, long-lasting, rectifying nanopores in the plasma membrane of exposed cells, resulting in increased membrane permeability to small molecules and ions, as well as an increase in intracellular Ca 21 , DNA fragmentation, disruption of the tumor's blood supply and the initiation of apoptosis. Apoptosis was indicated by a 3-fold increase in Bad labeling and a 72% decrease in Bcl-2 labeling. In addition, microvessel density within the treated tumors fell by 93%. This new therapy utilizing nanosecond pulsed electric fields has the advantages of highly localized targeting of tumor cells and a total exposure time of only 180 lsec. These pulses penetrate into the interior of every tumor cell and initiate DNA fragmentation and apoptosis while at the same time reducing blood flow to the tumor. This new physical tumor therapy is drug free, highly localized, uses low energy, has no significant side effects and results in very little scarring. ' 2009 UICC
Key Points• C1 domain antibodies with low inhibitor titers by the Bethesda assay are pathogenic in mice due to increased fVIII clearance.• Monoclonal and patientderived polyclonal anti-fVIII C1 domain antibodies recognize similar B-cell epitopes.Inhibitor formation in hemophilia A is the most feared treatment-related complication of factor VIII (fVIII) therapy. Most inhibitor patients with hemophilia A develop antibodies against the fVIII A2 and C2 domains. Recent evidence demonstrates that the C1 domain contributes to the inhibitor response. Inhibitory anti-C1 monoclonal antibodies (mAbs) have been identified that bind to putative phospholipid and von Willebrand factor (VWF) binding epitopes and block endocytosis of fVIII by antigen presenting cells. We now demonstrate by competitive enzyme-linked immunosorbent assay and hydrogendeuterium exchange mass spectrometry that 7 of 9 anti-human C1 mAbs tested recognize an epitope distinct from the C1 phospholipid binding site. These mAbs, designated group A, display high binding affinities for fVIII, weakly inhibit fVIII procoagulant activity, poorly inhibit fVIII binding to phospholipid, and exhibit heterogeneity with respect to blocking fVIII binding to VWF. Another mAb, designated group B, inhibits fVIII procoagulant activity, fVIII binding to VWF and phospholipid, fVIIIa incorporation into the intrinsic Xase complex, thrombin generation in plasma, and fVIII uptake by dendritic cells. Group A and B epitopes are distinct from the epitope recognized by the canonical, human-derived inhibitory anti-C1 mAb, KM33, whose epitope overlaps both groups A and B. Antibodies recognizing group A and B epitopes are present in inhibitor plasmas from patients with hemophilia A. Additionally, group A and B mAbs increase fVIII clearance and are pathogenic in a hemophilia A mouse tail snip bleeding model. Group A anti-C1 mAbs represent the first identification of pathogenic, weakly inhibitory antibodies that increase fVIII clearance. (Blood. 2016;128(16):2055-2067
Hemostasis encompasses an ensemble of interactions among platelets, coagulation factors, blood cells, endothelium, and hemodynamic forces, but current assays assess only isolated aspects of this complex process. Accordingly, here we develop a comprehensive in vitro mechanical injury bleeding model comprising an “endothelialized” microfluidic system coupled with a microengineered pneumatic valve that induces a vascular “injury”. With perfusion of whole blood, hemostatic plug formation is visualized and “in vitro bleeding time” is measured. We investigate the interaction of different components of hemostasis, gaining insight into several unresolved hematologic issues. Specifically, we visualize and quantitatively demonstrate: the effect of anti-platelet agent on clot contraction and hemostatic plug formation, that von Willebrand factor is essential for hemostasis at high shear, that hemophilia A blood confers unstable hemostatic plug formation and altered fibrin architecture, and the importance of endothelial phosphatidylserine in hemostasis. These results establish the versatility and clinical utility of our microfluidic bleeding model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.