Pleiomorphic adenoma of the salivary glands is a benign epithelial tumour occurring primarily in the major and minor salivary glands. It is by far the most common type of salivary gland tumour. Microscopically, pleiomorphic adenomas show a marked histological diversity with epithelial, myoepithelial and mesenchymal components in a variety of patterns. In addition to a cytogenetic subgroup with normal karyotypes, pleiomorphic adenomas are characterized by recurrent chromosome rearrangements, particularly reciprocal translocations, with breakpoints at 8q12, 3p21, and 12q13-15, in that order of frequency. The most common abnormality is a reciprocal t(3;8)(p21;q12). We here demonstrate that the t(3;8)(p21;q12) results in promoter swapping between PLAG1, a novel, developmentally regulated zinc finger gene at 8q12, and the constitutively expressed gene for beta-catenin (CTNNB1), a protein interface functioning in the WG/WNT signalling pathway and specification of cell fate during embryogenesis. Fusions occur in the 5'-non-coding regions of both genes, exchanging regulatory control elements while preserving the coding sequences. Due to the t(3;8)(p21;q12), PLAG1 is activated and expression levels of CTNNB1 are reduced. Activation of PLAG1 was also observed in an adenoma with a variant translocation t(8;15)(q12;q14). Our results indicate that PLAG1 activation due to promoter swapping is a crucial event in salivary gland tumourigenesis.
We have previously shown that the PLAG1 gene on chromosome 8q12 is consistently rearranged in pleomorphic adenomas of the salivary glands with t(3;8)(p21;q12) translocations. The t(3;8) results in promoter swapping between the PLAG1 gene, which encodes a novel zinc ®nger protein, and the constitutively expressed gene for b-catenin (CTNNB1), a protein with roles in cell-cell adhesion and the WG/WNT signalling pathway. In order to assess the importance of other translocation partner genes of PLAG1, and their possible relationship to CTNNB1, we have characterized a second recurrent translocation, i.e. the t(5;8)(p13;q12). This translocation leads to ectopic expression of a chimeric transcript consisting of sequences from the ubiquitously expressed gene for the leukemia inhibitory factor receptor (LIFR) and PLAG1. As for the t(3;8), the fusions occurred in the 5'-noncoding regions of both genes, exchanging regulatory control elements while preserving the coding sequences. The results of the current as well as previous studies indicate that ectopic expression of PLAG1 under the control of promoters of distinct translocation partner genes is a general pathogenetic mechanism for pleomorphic adenomas with 8q12 aberrations.
The recently discovered fur gene encodes a membrane-associated protein with a recognition function. To further characterize the gene, we studied its expression by Northern blot analysis using poly(A)-selected RNA from a variety of organs of African green monkey and rat. The fur gene appeared to be differentially expressed, relatively high levels of fur mRNA being present in specimens of liver and kidney, low levels in brain, spleen, and thymus, and very low levels in heart muscle, lung, and testis. mRNA levels in specimens of human lung tissue without neoplastic lesions were also very low. Similar analyses of primary human lung carcinomas of different histopathological types revealed a highly selective and strong elevation offir expression in nonsmall cell lung carcinomas, but not in small cell lung carcinomas. These results indicate that fir expression can be used to discriminate between these two types of human lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.