Mini-EUSO is a telescope observing the Earth in the ultraviolet band from the International Space Station. It is a part of the JEM-EUSO program, paving the way to future larger missions, such as K-EUSO and POEMMA, devoted primarily to the observation of ultrahigh-energy cosmic rays from space. Mini-EUSO is capable of observing extensive air showers generated by ultrahigh-energy cosmic rays with an energy above 1021 eV and to detect artificial showers generated with lasers from the ground. Other main scientific objectives of the mission are the search for nuclearites and strange quark matter, the study of atmospheric phenomena such as transient luminous events, meteors, and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. Mini-EUSO will map the nighttime Earth in the UV range (290–430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 μs, through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019 August 22, from the Baikonur Cosmodrome, is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 multianode photomultiplier tubes, 64 channels each, for a total of 2304 channels with single-photon counting sensitivity and an overall field of view of 44°. Mini-EUSO also contains two ancillary cameras to complement measurements in the near-infrared and visible ranges. In this paper, we describe the detector and present the various phenomena observed in the first months of operations.
EUSO-TA is a on-ground telescope, installed at the Telescope Array (TA) site in Black Rock Mesa, Utah, USA in 2013. The main aim of the project is observation of Ultra High Energy Cosmic Rays (UHECR) through detection of ultraviolet light generated by cosmic-ray showers. EUSO-TA consists of two, 1 m 2 square Fresnel lenses with a field of view of about 10.6 • × 10.6 •. Light is focused on the Photo Detector Module (PDM), identical to the ones that are employed in the other EUSO missions' focal surfaces. The PDM is composed of 36 Hamamatsu multi-anode photomultipliers (64 channels per tube), for a total of 2304 channels. Front-End readout is performed by 36 ASICS, with trigger and readout tasks done by two acquisition boards that send the data to a CPU and storage system. The telescope is housed in a shed located in front of one of the fluorescence detectors of the TA experiment, pointing in the direction of the Electron Light Source and Central Laser Facility. After the installation in February 2013, the performance of the detector has been very good, with little (about one photoelectron) electronic noise and a Point Spread Function of stars compatible with expectations. Several ultra high energy cosmic rays and meteors have been observed. The limiting magnitude of 5.5 on summed frames has been established, with PSF of ∼ 2.5 pixels FWHM. Measurements of the UV background in different darkness conditions and moon phases and positions have been completed. EUSO-TA has been used for development of balloon and space flights within the EUSO framework.
EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25 th of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.
The JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program aims at developing Ultra-Violet (UV) fluorescence telescopes for efficient detections of Extensive Air Showers (EASs) induced by Ultra-High Energy Cosmic Rays (UHECRs) from satellite orbit. In order to demonstrate key technologies for JEM-EUSO, we constructed the EUSO-Balloon instrument that consists of a 1 m 2 refractive telescope with two Fresnel lenses and an array of multi-anode photo-multiplier tubes at the focus. Distinguishing it from the former balloon-borne experiments, EUSO-Balloon has the capabilities of single photon counting with a gate time of 2.3 µs and of has imaging with a total of 2304 pixels. As a pathfinder mission, the instrument was launched for an 8 hour stratospheric flight on a moonless night in August 2014 over Timmins, Canada. In this work, we analyze the count rates over 2.5 hour intervals. The measurements are of diffuse light, e.g. of airglow emission, back-scattered from the Earth's atmosphere as well as artificial light 166 4 ACCEPTED MANUSCRIPT sources.Count rates from such diffuse light are a background for EAS detections in future missions and relevant factor for the analysis of EAS events. We also obtain the geographical distribution of the count rates over a km 2 area along the balloon trajectory. In developed areas, light sources such a the airport, mines, and factories are clearly identified. This demonstrates the correct location of signals that will be required for the EAS analysis in future missions. Although a precise determination of count rates is relevant for the existing instruments, the absolute intensity of diffuse light is deduced for the limited conditions by assuming spectra models and considering simulations of the instrument response. Based on the study of diffuse light by EUSO-Balloon, we also discuss the implications for coming pathfinders and future space-based UHECR observation missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.