Cytosolic beta-glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta-D-glycosides, including beta-D-glucoside and beta-D-galactoside. We therefore refer to this enzyme as cytosolic beta-glycosidase. We cloned the cDNA encoding the human cytosolic beta-glycosidase by performing PCR on cDNA prepared from total human liver RNA. Specific primers were based on human expressed sequence tags found in the expressed sequence tag database. The cloned cDNA contained 1407 nt with an open reading frame encoding 469 amino acid residues. Amino acid sequence analysis indicates that human cytosolic beta-glycosidase is most closely related to lactase phlorizin hydrolase and klotho protein. The enzyme was characterized by using cell lysates of COS-7 cells transfected with a eukaryotic expression vector containing the cDNA. The biochemical, kinetic and inhibition properties of the cloned enzyme were found to be identical with those reported for the enzyme purified from human liver.
In situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of expression of the Ad receptor CAR on the DC surface. DC activation also requires interaction of CD40 with its ligand CD40L to generate protective T-cell-mediated tumor immunity. Therefore, to create a strategy to target Ads to DCs in vivo, we constructed a bispecific adaptor molecule with the CAR ectodomain linked to the CD40L extracellular domain via a trimerization motif (CFm40L). By targeting Ad to CD40 with the use of CFm40L, we enhanced both transduction and maturation of cultured bone marrow-derived DCs. Moreover, we improved transduction efficiency of DCs in lymph node and splenic cell suspensions in vitro and in skin and vaccination site-draining lymph nodes in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.