Melatonin, the chief hormone of the pineal gland in vertebrates, is widely distributed in the animal kingdom. Among many functions, melatonin synchronizes circadian and circannual rhythms, stimulates immune function, may increase life span, inhibits growth of cancer cells in vitro and cancer progression and promotion in vivo, and was recently shown to be a potent hydroxyl radical scavenger and antioxidant. Hydroxyl radicals are highly toxic by-products of oxygen metabolism that damage cellular DNA and other macromolecules. Herein we report that melatonin, in varying concentrations, is also found in a variety of plants. Melatonin concentrations, measured in nine different plants by radioimmunoassay, ranged from 0 to 862 pg melatonin/mg protein. The presence of melatonin was verified by gas chromatography/mass spectrometry. Our findings suggest that the consumption of plant materials that contain high levels of melatonin could alter blood melatonin levels of the indole as well as provide protection of macromolecules against oxidative damage.
Background: N-acetyltransferases (NAT) and glutathione S-transferases (GST) are involved in the metabolism of several ubiquitous chemical substances leading to the activation and detoxification of carcinogenic heterocyclic and aromatic amines. Since polymorphisms within these genes are described to influence the metabolism of ubiquitous chemicals, we conducted the present study to determine if individuals with self-reported chemical-related sensitivity differed from controls without self-reported chemical-related sensitivity with regard to the distribution of genotype frequencies of NAT2, GSTM1, GSTT1, and GSTP1 polymorphisms.
Glutathione S-transferase (GST, E.C. 2.5.1.18) comprises a family of isoenzymes that play a key role in the detoxification of such exogenous substrates as xenobiotics, environmental substances, and carcinogenic compounds. At least five mammalian GST gene families have been identified to be polymorphic, and mutations or deletions of these genes contribute to the predisposition for several diseases, including cancer. The gene cluster of GSTM1–GSTM5 has been reported to be localized on chromosome 1p and spans a length of nearly 100 kb. One mutation of the GSTM3 gene generates a recognition site for the transcription factor yin yang 1. As a result of this mutation, the expression of GSTM3 can be influenced. The mutated GSTM3 gene has been reported to be involved in increased susceptibility for the development of cancer, but no information is available concerning its role in bladder cancer. We have identified patients with a heterozygous GSTM3 geno- type who carry a significantly increased risk for the development of bladder cancer. Here we report that the mutation of intron 6 of GSTM3 increases the risk for bladder cancer (odds ratio: 2.31; 95% confidence interval [CI], 1.79–2.82). We developed a procedure to identify heterozygous or homozygous carriers of the GSTM1 alleles. Heterozygous carriers of the GSTM1 null genotype have a significantly elevated risk of developing bladder cancer. We calculated an odds ratio of 3.54 (95% CI, 2.99–4.11) for this genotype. These observations lead to the assumption that the lack of detoxification by glutathione conjugation predispose to bladder cancer when at least one of two alleles is affected. Furthermore, individuals presenting the homozygous wild type of GSTM1 and GSTM3 are significantly protected against bladder cancer.
Nine of 40 pleomorphic salivary gland adenomas (PSAs) showed clonal aberrations of chromosome 12, with a breakpoint at 12q13→q15. The cytogenetic findings in these cases and those of nine additional cases reported in the literature suggest that this type of aberration is a primary change directly involved in the genesis of PSA.
One approach for risk assessment of cancer is the evaluation of polymorphic enzymes involved in cancer using molecular tools. Phase II enzymes are involved in the detoxification of several drugs, environmental substances and carcinogenic compounds. Here, we analyzed enzymes for their putative relevance in urinary bladder cancer. The hereditable enzyme polymorphism of arylamine N-acetyltransferase 2 (NAT2) and glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) was studied in 157 hospital-based patients and in 223 control subjects. Slow acetylation was not observed to be a significant risk factor of developing bladder cancer (OR: 1.33; 95% CI 0.85-2.09). One genotype responsible for slow acetylation (NAT2*5B/*6A) was observed significantly more frequently in bladder cancer patients compared with control subjects (OR: 1.63; 95% CI 1.03-2.58). Gender-specific effects were observed when patients were divided into subgroups. In male patients, slow acetylators were identified as carrying a significant increased risk of developing bladder cancer, in particular when the genotype NAT2*5B/*6A was combined with the GSTM1 null genotype (OR: 4.39; 95% CI 1.98-9.74). By contrast, the same genotype combination significantly protected female patients from bladder cancer (OR: 0.21; 95% CI 0.06-0.80).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.