Severe acute respiratory syndrome coronavirus 2 pandemic capacity is derived from the unique structural features on its spike protein: fast viral surfing over the epithelium with flat N‐terminal domain, tight binding to ACE2 entry receptor, and furin protease utilization. In addition, the possible involvement of other components such as lipid rafts, CLRs, and neuropilin is, in combination, mediating the accelerated cell entry and other critical steps in its overwhelming contagious capacity and pandemy.
Immune evasion is one of the unique characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) attributed to its ORF8 protein. This protein modulates the adaptive host immunity through down-regulation of MHC-1 (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the host's interferon-mediated antiviral response. To understand the host's immune perspective concerning the ORF8 protein, a comprehensive study of the ORF8 protein and mutations possessed by it have been performed. Chemical and structural properties of ORF8 proteins from different hosts, such as human, bat, and pangolin, suggest that the ORF8 of SARS-CoV-2 is much closer to ORF8 of Bat RaTG13-CoV than to that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 in SARS-CoV-2 can be grouped into four classes based on their predicted effects (Hussain et al., 2021) [1]. Based on the geo-locations and timescale of sample collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were found upon sequence similarity analyses and consideration of the amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of the rapidly evolving SARS-CoV-2 through the ORF8.
Olfactory ensheathing cells (OECs) are a special glia that ensheath olfactory receptor axons that enter the brain via olfactory phila, thus, providing a potential route for access of pathogens. Streptococcus pneumoniae (Sp), that has a capsule rich in mannosyl residues, is the most common cause of rhinosinusitis that may evolve to meningitis. We have tested whether OECs in vitro express the mannose receptor (MR), and could internalize Sp via MR. Cultures were infected by a suspension of Sp (ATCC 49619), recognized by an anti-Sp antibody, in a 100:1 bacteria:cells ratio. Competition assays, by means of mannan, showed around a 15-fold reduction in the number of internalized bacteria. To verify whether MR could be involved in Sp uptake, OECs were reacted with an antibody against the MR C-terminal peptide (anti-cMR) and bacteria were visualized with Sytox Green. Selective cMR-immunoreaction was seen in perinuclear compartments containing bacteria whereas mannan-treated cultures showed an extremely low percentage of internalized bacteria and only occasional adhered bacteria. Our data suggest the involvement of MR in adhesion of bacteria to OEC surface, and in their internalization. Data are also coherent with a role of OECs as a host cell prior to (and during) bacterial invasion of the brain.
Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines.
The use of bone marrow mononuclear cells (BMMCs) has been shown as a putative efficient therapy for stroke. However, the mechanisms of therapeutic action are not yet completely known. Mannose receptor (MR) is a subgroup of the C-type lectin receptor superfamily involved in innate immune response in several tissues. Although known primarily for its immune function, MR also has important roles in cell migration, cell debris clearance and tissue remodeling during inflammation and wound healing. Here we analyzed MR expression in brains of rats one week after induction of unilateral focal cortical ischemia by thermocoagulation in blood vessels of sensorimotor cortex. Additionally, we evaluated possible changes in such expression in cortices of rats subjected to ischemia plus treatment with BMMCs. Our results showed high expression of MR in an unknown GFAP(+) cell type and in phagocytic macrophages/microglia within the lesion boundary zone whereas in the non-injured (contralateral) cortical parenchyma, low levels of MR expression were observed. Moreover, therapy with BMMCs induced overexpression of MR in ipsilateral (injured) cortex. Previous studies from our group have shown functional recovery and decreased neurodegeneration in BMMC-treated rats in the same model of focal cortical ischemia. Thus, we suggest that ischemic injury induces large increase in MR expression as part of a mechanism for clearance of damage-associated molecular patterns (DAMPs). In addition, induction of MR overexpression by BMMCs might increase the efficiency of clearance, being one of the protective mechanisms of these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.