Recently, impressive external quantum efficiencies (EQEs) exceeding 20% are obtained for green, red, and near-infrared perovskitebased LEDs (PeLEDs) through the efforts of perovskite material optimization and device architecture design. [8-10] These achievements firmly prompt the potential applications of PeLEDs in display and illumination fields. However, compared with the efficient PeLEDs, there is only moderate performance reported for blue PeLEDs, [11-18] which undoubtedly restrict PeLED applications in full-color displays and white-light illumination. Thus, the breakthroughs of the device performance are urgently required for blue PeLEDs. Substantial efforts have been made in the past several years to obtain blue perovskite emitters, such as perovskite nanocrystals (NCs), [19-25] 2D perovskite nanoplatelets, [26-32] and quasi-2D perovskites. [33-39] In particular, the quasi-2D perovskites are rising as efficient luminescent materials for highly performed blue PeLEDs due to the cascade energy landscape for efficient exciton transfer and the subsequent radiative recombination. Typically, the quasi-2D perovskites have a formula of B 2 (APbBr 3) n−1 PbBr 4 , While there has been extensive investigation into modulating quasi-2D perovskite compositions in light-emitting diodes (LEDs) for promoting their electroluminescence, very few reports have studied approaches involving enhancement of the energy transfer between quasi-2D perovskite layers of the film, which plays very important role for achieving high-performance perovskite LEDs (PeLEDs). In this work, a bifunctional ligand of 4-(2-aminoethyl)benzoic acid (ABA) cation is strategically introduced into the perovskite to diminish the weak van der Waals gap between individual perovskite layers for promoting coupled quasi-2D perovskite layers. In particular, the strengthened interaction between coupled quasi-2D perovskite layers favors an efficient energy transfer in the perovskite films. The introduced ABA can also simultaneously passivate the perovskite defects by reducing metallic Pb for less nonradiative recombination loss. Benefiting from the advanced properties of ABA incorporated perovskites, highly efficient blue PeLEDs with external quantum efficiency of 10.11% and a very long operational stability of 81.3 min, among the best performing blue quasi-2D PeLEDs, are achieved. Consequently, this work contributes an effective approach for high-performance and stable blue PeLEDs toward practical applications. Metal halide perovskites have emerged as competitive candidates for the next-generation light-emitting diodes (LEDs) due to their excellent optical properties, such as tunable light emission color, high color purity, and high photoluminescence The ORCID identification number(s) for the author(s) of this article can be found under
The long‐term operational stability of perovskite light‐emitting diodes (PeLEDs), especially red PeLEDs with only several hours typically, has always faced great challenges. Stable β‐CsPbI3 nanocrystals (NCs) are demonstrated for highly efficient and stable red‐emitting PeLEDs through incorporation of poly(maleic anhydride‐alt‐1‐octadecene) (PMA) in synthesizing the NCs. The PMA can chemically interact with PbI2 in the precursors via the coupling effect between O groups in PMA and Pb2+ to favor crystallization of stable β‐CsPbI3 NCs. Meanwhile, the cross‐linked PMA significantly reduces the PbCs anti‐site defect on the surface of the β‐CsPbI3 NCs. Benefiting from the improved crystal phase quality, the photoluminescence quantum yield for β‐CsPbI3 NCs films remarkably increases from 34% to 89%. The corresponding red‐emitting PeLEDs achieves a high external quantum efficiency of 17.8% and superior operational stability with the lifetime, the time to half the initial electroluminescence intensity (T50) reaching 317 h at a constant current density of 30 mA cm−2.
A simple off-the-shelf post-device ligand treatment is developed to simultaneously improve the performance and air stability of perovskite solar cells, as well as repair as-prepared ‘poor devices’ for the first time.
Despite being a promising candidate for next‐generation photovoltaics, perovskite solar cells (PSCs) exhibit limited stability that hinders their practical application. In order to improve the humidity stability of PSCs, herein, a series of ionic liquids (ILs) “1‐alkyl‐4‐amino‐1,2,4‐triazolium” (termed as RATZ; R represents alkyl chain, and ATZ represents 4‐amino‐1,2,4‐triazolium) as cations are designed and used as additives in methylammonium lead iodide (MAPbI3) perovskite precursor solution, obtaining triazolium ILs‐modified PSCs for the first time (termed as MA/RATZ PSCs). As opposed to from traditional methods that seek to improve the stability of PSCs by functionalizing perovskite film with hydrophobic molecules, humidity‐stable perovskite films are prepared by exploiting the self‐assembled monolayer (SAM) formation of water‐soluble triazolium ILs on a hydrophilic perovskite surface. The mechanism is validated by experimental and theoretical calculation. This strategy means that the MA/RATZ devices exhibit good humidity stability, maintaining around 80% initial efficiency for 3500 h under 40 ± 5% relative humidity. Meanwhile, the MA/RATZ PSCs exhibit enhanced thermal stability and photostability. Tuning the molecule structure of the ILs additives achieves a maximum power conversion efficiency (PCE) of 20.03%. This work demonstrates the potential of using triazolium ILs as additives and SAM and molecular design to achieve high performance PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.