Exposure to various pathogens can stimulate at least two patterns of cytokine production by CD4-positive T cells. Responses that result in secretion of interferon-gamma (IFN-gamma), lymphotoxin and interleukin-2 (IL-2) are classified as T-helper-1 (Th1); CD4+ T-cell production of IL-4, IL-5, IL-9, IL-10 and IL-13 is called a T-helper-2 response (Th2). Differentiation of CD4+ T cells into either Th1 or Th2 cells is influenced by the cytokine milieu in which the initial antigen priming occurs. Here we use flow cytometry to identify the presence of intracellular cytokines (cytoflow) and analyse T-cell production of IFN-gamma and IL-4 from mice infected with Listeria monocytogenes or Nippostrongylus brasiliensis. We show that T cells bearing gamma delta receptors discriminate early in infection between these two pathogens by producing cytokines associated with the appropriate T-helper response. Our results demonstrate that gamma delta T cells are involved in establishing primary immune responses.
The high levels of IFNγ and of IFNγ-induced chemokines and their correlation with the severity of laboratory abnormalities of MAS suggest a pivotal role of IFNγ in MAS.
Innate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis of TLR4-driven inflammatory disorders, as well as the identity of signaling pathways activated by IL-6 in a proinflammatory state, remain unclear. To define the contribution of gp130 signaling events to TLR4-driven inflammatory responses, we combined genetic and therapeutic approaches based on a series of gp130F/F knock-in mutant mice displaying hyperactivated IL-6–dependent JAK/STAT signaling in an experimental model of LPS/TLR4-mediated septic shock. The gp130F/F mice were markedly hypersensitive to LPS, which was associated with the specific upregulated production of IL-6, but not TNF-α. In gp130F/F mice, either genetic ablation of IL-6, Ab-mediated inhibition of IL-6R signaling or therapeutic blockade of IL-6 trans-signaling completely protected mice from LPS hypersensitivity. Furthermore, genetic reduction of STAT3 activity in gp130F/F:Stat3+/− mice alleviated LPS hypersensitivity and reduced LPS-induced IL-6 production. Additional genetic approaches demonstrated that the TLR4/Mal pathway contributed to LPS hypersensitivity and increased IL-6 production in gp130F/F mice. Collectively, these data demonstrate for the first time, to our knowledge, that IL-6 trans-signaling via STAT3 is a critical modulator of LPS-driven proinflammatory responses through cross-talk regulation of the TLR4/Mal signaling pathway, and potentially implicate cross-talk between JAK/STAT and TLR pathways as a broader mechanism that regulates the severity of the host inflammatory response.
IL-27 is formed by the association of a cytokine subunit, p28, with the soluble cytokine receptor EBV-induced gene 3 (EBI3). The IL-27R comprises gp130 and WSX-1. The marked difference between EBI3−/− and WSX-1−/− mice suggests that p28 has functions independent of EBI3. We have identified an alternative secreted complex formed by p28 and the soluble cytokine receptor cytokine-like factor 1 (CLF). Like IL-27, p28/CLF is produced by dendritic cells and is biologically active on human NK cells, increasing IL-12- and IL-2-induced IFN-γ production and activation marker expression. Experiments with Ba/F3 transfectants indicate that p28/CLF activates cells expressing IL-6Rα in addition to the IL-27R subunits. When tested on CD4 and CD8 T cells, p28/CLF induces IL-6Rα-dependent STAT1 and STAT3 phosphorylation. Furthermore, p28/CLF inhibits CD4 T cell proliferation and induces IL-17 and IL-10 secretion. These results indicate that p28/CLF may participate in the regulation of NK and T cell functions by dendritic cells. The p28/CLF complex engages IL-6R and may therefore be useful for therapeutic applications targeting cells expressing this receptor. Blocking IL-6R using humanized mAbs such as tocilizumab has been shown to be beneficial in pathologies like rheumatoid arthritis and juvenile idiopathic arthritis. The identification of a new IL-6R ligand is therefore important for a complete understanding of the mechanism of action of this emerging class of immunosuppressors.
Background: IL-6 trans-signaling plays a critical role in chronic inflammation and cancer. Results: The trans-signaling inhibitor sgp130(Fc) also inhibits classic signaling depending on IL-6/sIL-6R ratios.
Conclusion:The additional function of sgp130(Fc) suggests that in vivo only low therapeutic concentrations guarantee blockade of trans-signaling but not classic signaling. Significance: The demonstration that the trans-signaling inhibitor can also inhibit classic signaling is central for the field of IL-6 biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.