Background-We evaluated the amounts of amyloid-beta (Aβ) peptides in the central nervous system (CNS) and in reservoirs outside the CNS and their potential impact on Aβ plasma levels and Alzheimer's disease (AD) pathology.
We have undertaken an integrated chemical and morphological comparison of the amyloid- (A) molecules and the amyloid plaques present in the brains of APP23 transgenic (tg) mice and human Alzheimer's disease (AD) patients. Despite an apparent overall structural resemblance to AD pathology, our detailed chemical analyses revealed that although the amyloid plaques characteristic of AD contain cores that are highly resistant to chemical and physical disruption, the tg mice produced amyloid cores that were completely soluble in buffers containing SDS. A chemical alterations account for the extreme stability of AD plaque core amyloid. The corresponding lack of post-translational modifications such as N-terminal degradation, isomerization, racemization, pyroglutamyl formation, oxidation, and covalently linked dimers in tg mouse A provides an explanation for the differences in solubility between human AD and the APP23 tg mouse plaques. We hypothesize either that insufficient time is available for A structural modifications or that the complex species-specific environment of the human disease is not precisely replicated in the tg mice. The appraisal of therapeutic agents or protocols in these animal models must be judged in the context of the lack of complete equivalence between the transgenic mouse plaques and the human AD lesions. Alzheimer's disease (AD)1 is a progressive neurodegenerative disorder characterized by the presence of extracellular amyloid plaques composed principally of amyloid- (A) surrounded by dystrophic neurites (1). This association and the realization that the basis of certain early-onset familial forms of AD seems to be the enhanced production of one or more A peptides have led to the hypothesis that A is intimately involved in the AD pathogenic process (2). A promising experimental approach to unraveling the role(s) of A in AD pathology has been the construction and characterization of transgenic mice that overexpress the amyloid precursor protein (APP) (3-12). Several transgenic mouse lines have been described that produce A deposits that accumulate in an agedependent fashion and morphologically resemble the senile plaques characteristic of human AD (3,6,8,12,37,38).The APP23 transgenic (tg) mice contain an APP751 cDNA with the Swedish familial AD mutation under the control of the neuron-specific Thy-1 promoter and express this human gene at levels 7-fold greater than endogenous murine APP (12). Longitudinal studies of these mice have revealed that extracellular amyloid deposits become evident as the APP23 tg mice age. These deposits exhibit, at their earliest appearance, the Congo red birefringence characteristic of the dense core plaques of human AD (12). A gradual progression from a diffuse deposit to a dense plaque is not a feature of the APP23 tg mouse pathology, paralleling our previous finding (13) that the diffuse amyloid deposits of AD do not represent a precursor developmental stage of senile plaques.A transgenic mouse model system that faithfully mimics every aspect of AD h...
Relative to the gray matter, there is a paucity of information regarding white matter biochemical alterations and their contribution to Alzheimer's disease (AD). Biochemical analyses of AD white matter combining size-exclusion, normal phase, and gas chromatography, immunoassays, and Western blotting revealed increased quantities of Abeta40 and Abeta42 in AD white matter accompanied by significant decreases in the amounts of myelin basic protein, myelin proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase. In addition, the AD white matter cholesterol levels were significantly decreased while total fatty acid content was increased. In some instances, these white matter biochemical alterations were correlated with patient apolipoprotein E genotype, Braak stage, and gender. Our observations suggest that extensive white matter axonal demyelination underlies Alzheimer's pathology, resulting in loss of capacitance and serious disturbances in nerve conduction, severely damaging brain function. These white matter alterations undoubtedly contribute to AD pathogenesis and may represent the combined effects of neuronal degeneration, microgliosis, oligodendrocyte injury, microcirculatory disease, and interstitial fluid stasis. To accurately assess the success of future therapeutic interventions, it is necessary to have a complete appreciation of the full scope and extent of AD pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.