New drugs selective for histamine H3-receptors can be used to establish that these receptors are involved in the feedback control of histamine synthesis and release, and to demonstrate their distribution in the brain and peripheral tissues. These drugs provide new tools for affecting physiological and possibly pathological conditions in which histamine is involved.
Some G-protein-coupled receptors display 'constitutive activity', that is, spontaneous activity in the absence of agonist. This means that a proportion of the receptor population spontaneously undergoes an allosteric transition, leading to a conformation that can bind G proteins. The process has been shown to occur with recombinant receptors expressed at high density, and/or mutated, but also non-mutated recombinant receptors expressed at physiological concentrations. Transgenic mice that express a constitutively active mutant of the beta2-adrenergic receptor display cardiac anomalies; and spontaneous receptor mutations leading to constitutive activity are at the origin of some human diseases. Nevertheless, this process has not previously been found to occur in animals expressing normal levels of receptor. Here we show that two isoforms of the recombinant rat H3 receptor display high constitutive activity. Using drugs that abrogate this activity ('inverse agonists') and a drug that opposes both agonists and inverse agonists ('neutral antagonist'), we show that constitutive activity of native H3 receptors is present in rodent brain and that it controls histaminergic neuron activity in vivo. Inverse agonists may therefore find therapeutic applications, even in the case of diseases involving non-mutated receptors expressed at normal levels.
Histamine H 3 receptor inverse agonists are known to enhance the activity of histaminergic neurons in brain and thereby promote vigilance and cognition. 1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, hydrochloride (BF2.649) is a novel, potent, and selective nonimidazole inverse agonist at the recombinant human H 3 receptor. On the stimulation of guanosine 5Ј-O-(3-[35 S]thio)triphosphate binding to this receptor, BF2.649 behaved as a competitive antagonist with a K i value of 0.16 nM and as an inverse agonist with an EC 50 value of 1.5 nM and an intrinsic activity ϳ50% higher than that of ciproxifan. Its in vitro potency was ϳ6 times lower at the rodent receptor. In mice, the oral bioavailability coefficient, i.e., the ratio of plasma areas under the curve after oral and i.v. administrations, respectively, was 84%. BF2.649 dose dependently enhanced tele-methylhistamine levels in mouse brain, an index of histaminergic neuron activity, with an ED 50 value of 1.6 mg/kg p.o., a response that persisted after repeated administrations for 17 days. In rats, the drug enhanced dopamine and acetylcholine levels in microdialysates of the prefrontal cortex. In cats, it markedly enhanced wakefulness at the expense of sleep states and also enhanced fast cortical rhythms of the electroencephalogram, known to be associated with improved vigilance. On the two-trial object recognition test in mice, a promnesiant effect was shown regarding either scopolamine-induced or natural forgetting. These preclinical data suggest that BF2.649 is a valuable drug candidate to be developed in wakefulness or memory deficits and other cognitive disorders.The cerebral histaminergic neurons seem to play a critical role in the maintenance of wakefulness and higher cerebral functions, e.g., attention or learning (for review, see Schwartz et al., 1991;Haas and Panula, 2003). Hence, druginduced activation of histaminergic neurotransmission in the central nervous system represents a promising therapeutic target in a large variety of neuropsychiatric disorders in which these functions are compromised and for which available therapeutic opportunities are limited in this respect .Stimulation of postsynaptic H 1 and/or H 2 receptors by agonists is, however, not acceptable due to unavoidable and detrimental actions of these drugs at peripheral, i.e., mainly cardiovascular and gastric targets. In contrast, presynaptic H 3 receptors are almost exclusively expressed in the central nervous system, and their blockade by drugs such as thioperamide markedly enhances the activity of histaminergic neurons, as shown namely by the increases in histamine (HA) release and turnover in rodent brain (Arrang et al., Article, publication date, and citation information can be found at
G protein-coupled receptors (GPCRs) are allosteric proteins that adopt inactive (R) and active (R*) conformations in equilibrium. R* is promoted by agonists or occurs spontaneously, leading to constitutive activity of the receptor. Conversely, inverse agonists promote R and decrease constitutive activity. The existence of another pharmacological entity, referred to as ''protean'' agonists (after Proteus, the Greek god who could change shape), was assumed on theoretical grounds. It was predicted from the existence of constitutive activity that a same ligand of this class could act either as an agonist or an inverse agonist at the same GPCR. Here, we show that proxyfan, a high-affinity histamine H 3-receptor ligand, acts as a protean agonist at recombinant H 3 receptors expressed in the same Chinese hamster ovary cells. In support of the physiological relevance of the process, we show that proxyfan also behaves as a protean agonist at native H 3 receptors known to display constitutive activity. On neurochemical and behavioral responses in rodents and cats, proxyfan displays a spectrum of activity ranging from full agonism to full inverse agonism. Thus, protean agonism demonstrates the existence of ligand-directed active states LR* different from, and competing with, constitutively active states R* of GPCRs, and defines a pharmacological entity with important therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.