Background Lizardfish (Saurida tumbil Bloch, 1795) bone is a fish by-product generated during industrial surimi processing. This by-product is an important source of collagen production since the use of terrestrial animal-based collagens no longer sought due to concern regarding the transfer of infectious diseases and religious issues. Hence, this study was carried out to determine the biochemical analysis of collagens from the bone of lizardfish extracted with different acids. Methods Lizardfish bone collagens were extracted with various acids (i.e., acetic, lactic and citric acids). All extraction processes were conducted in a chiller room (4 °C). The extracted collagens were biochemically characterized, such as hydroxyproline content, Ultraviolet (UV) absorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra (FTIR), Differential scanning calorimetry (DSC) and solubility in different pH values and NaCl concentrations. Results The yield of extracted collagens ranged between 1.73% and 2.59%, with the highest (p < 0.05) observed in citric acid-extracted collagen (CaEC). Protein patterns confirmed that all-collagen samples had two identical subunits, α1 and α2, representing type I collagen. The highest whiteness value was found in acetic acid-extracted collagen (AaEC), but there was no significant difference (p ≥ 0.05) compared to lactic acid-extracted collagen (LaEC). UV absorption and XRD analysis reflected the characteristics of the collagen, as reported in the literature. For the FTIR, all acid-extracted collagen samples presented a triple helical structure. The thermal transition temperature (Tmax = 77.92–89.04 °C) was in accordance with collagen extracted from other fish species. All extracted collagens were highly soluble in acidic pH and low concentrations of NaCl (0–20 g/L). In conclusion, collagens extracted from lizardfish bone may be used as alternative sources of collagen in industrial settings, and AaEC would be considered superior in terms of the characteristics evaluated in this study.
Marine fish collagen has attracted considerable attention due to its characteristics, including its biodegradability, biocompatibility, and weak antigenicity, and is considered a safer material compared to collagen from terrestrial animals. The aim of this study was to extract and characterize collagen from the skin of lizardfish (Saurida tumbil Bloch, 1795) with three different acids. The yields of acetic acid-extracted collagen (AESkC), lactic acid-extracted collagen (LESkC), and citric acid-extracted collagen (CESkC) were 11.73 ± 1.14%, 11.63 ± 1.10%, and 11.39 ± 1.05% (based on wet weight), respectively. All extracted collagens were categorized as type I collagen with mainly alpha chains (α1 and α2) detected and γ and β chains to some extent. Fourier transform infrared (FTIR) spectra showed an intact triple-helical structure in the AESkC, LESkC, and CESkC. UV-vis spectra and X-ray diffraction further demonstrated the similarity of the extracted collagens to previously reported fish skin collagens. AESkC (Tmax = 40.24 °C) had higher thermostability compared to LESkC (Tmax = 38.72 °C) and CESkC (Tmax = 36.74 °C). All samples were highly soluble in acidic pH and low concentrations of NaCl (0–20 g/L). Under field emission scanning electron microscopy (FESEM) observation, we noted the loose, fibrous, and porous structures of the collagens. The results suggest that the lizardfish skin collagens could be a potential alternative source of collagen, especially the AESkC due to its greater thermostability characteristic.
The purpose of this research was to extract collagen from the scales of lizardfish (Saurida tumbil) using various acids. Acetic acid-extracted collagen (AScC) produced a higher yield (1.8 mg/g) than lactic acid-extracted collagen (LScC) and citric acid-extracted collagen (CScC) although not significantly different (p > 0.05). All extracted collagens were categorized as type I collagens with the presence of alpha chains (α1 and α2) based on the SDS-PAGE profiles. The triple-helical structure of the collagen was maintained in the AScC, LScC, and CScC as confirmed by the FTIR spectra. The UV-vis and X-ray diffraction spectra observed in all collagens were in agreement with previous work on fish scale and calfskin (commercial) collagens. The thermal stability of AScC (Tmax = 31.61 °C) was greater than LScC (Tmax = 30.86 °C) and CScC (Tmax = 30.88 °C). The microstructure of acid-extracted collagens was characterized as complex, fibrous, and multilayered, with irregular sheet-like structures. All samples were highly soluble in acidic pH (1.0–4.0) and in low concentrations of NaCl (0–20 g/L). In conclusion, the lizardfish scale collagen, particularly AScC, may be used as an alternative to terrestrial animal collagen.
Collagen is a structural protein naturally found in mammals. Vertebrates and other connective tissues comprise about 30% of an animal’s overall protein. Collagen is used in a variety of applications including cosmetics, biomedical, biomaterials, food, and pharmaceuticals. The use of marine-based collagen as a substitute source is rapidly increasing due to its unique properties, which include the absence of religious restrictions, a low molecular weight, no risk of disease transmission, biocompatibility, and ease of absorption by the body system. This review discusses recent research on collagen extraction from marine-based raw material, specifically fish by-products. Furthermore, pretreatment on various sources of fish materials, followed by extraction methods, was described. The extraction procedures for acid soluble collagen (ASC) and pepsin soluble collagen (PSC) for fish collagen isolation are specifically discussed and compared. As a result, the efficacy of collagen yield was also demonstrated. The recent trend of extracting fish collagen from marine biomaterials has been summarized, with the potential to be exploited as a wound healing agent in pharmaceutical applications. Furthermore, background information on collagen and characterization techniques primarily related to the composition, properties, and structure of fish collagen are discussed.
Fish processing waste is a prospective source of collagen and a cost-effective environmental pollutant. The skin of the purple-spotted bigeye snapper (Priacanthus tayenus) was extracted utilising various acid soluble collagens (ASC) including acetic acid (AAC), lactic acid (LAC), citric acid (CAC) and pepsin soluble collagens (PSC). In this study, PSC (6.65%) had the highest collagen yield, followed by AAC (5.79%), CAC (4.15%), and LAC (3.19%). The maximum temperatures (Tmax) denaturation of AAC, LAC, CAC, and PSC were 31.4, 31.7, 31.5, and 33.2 °C, respectively. UV-VIS absorption spectra showed all extracted collagens had a range of absorbance at 230 nm, due to the presence of glycine, proline, hydroxyproline, and triple-helical collagen. Additionally, they exhibited amide A, B, amide I, II, and III peaks. SDS–PAGE identified all extracted collagens as type I. The PSC had a significantly higher (p < 0.05) hydroxyproline content than acidic extraction 66.3 ± 1.03 (mg/g sample). Furthermore, all samples were extremely soluble in acetic conditions at pH 5, and all collagen was soluble in NaCl up to 3% (w/v). Therefore, PSC was the best treatment since it did not impact collagen triple helical and acetic acid yielded the most collagen in ASC extraction. Overall, the analysis revealed that fish skin waste might be used as an alternate source of collagen in diverse applications, particularly in food applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.