Eukaryotes regulate the effective dosage of their ribosomal RNA (rRNA) genes, expressing fewer than half of the genes at any one time. Likewise, genetic hybrids displaying nucleolar dominance transcribe rRNA genes inherited from one parent but silence the other parental set. We show that rRNA gene dosage control and nucleolar dominance utilize a common mechanism. Central to the mechanism is an epigenetic switch in which concerted changes in promoter cytosine methylation density and specific histone modifications dictate the on and off states of the rRNA genes. A key component of the off switch is HDT1, a plant-specific histone deacetylase that localizes to the nucleolus and is required for H3 lysine 9 deacetylation and subsequent H3 lysine 9 methylation. Collectively, the data support a model in which cytosine methylation and histone deacetylation are each upstream of one another in a self-reinforcing repression cycle.
Nucleolar dominance describes the silencing of one parental set of ribosomal RNA (rRNA) genes in a genetic hybrid, an epigenetic phenomenon that occurs on a scale second only to X-chromosome inactivation in mammals. An RNA interference (RNAi) knockdown screen revealed that the predicted Arabidopsis histone deacetylase, HDA6, is required for rRNA gene silencing in nucleolar dominance. In vivo, derepression of silenced rRNA genes upon knockdown of HDA6 is accompanied by nucleolus organizer region (NOR) decondensation, loss of promoter cytosine methylation, and replacement of histone H3 Lys 9 (H3K9) dimethylation with H3K4 trimethylation, H3K9 acetylation, H3K14 acetylation, and histone H4 tetra-acetylation. Consistent with these in vivo results, purified HDA6 deacetylates lysines modified by histone acetyltransferases whose substrates include H3K14, H4K5, and H4K12. HDA6 localizes, in part, to the nucleolus, supporting a model whereby HDA6 erases histone acetylation as a key step in an epigenetic switch mechanism that silences rRNA genes through concerted histone and DNA modifications.
Allopolyploidy is a significant evolutionary process, resulting in new species with diploid or greater chromosome complements derived from two or more progenitor species. We examined the chromosomal consequences of genomic merger in Arabidopsis suecica, the allotetraploid hybrid of Arabidopsis thaliana and Arabidopsis arenosa. Fluorescence in situ hybridization with centromere, nucleolus organizer region (NOR), and 5S rRNA gene probes reveals the expected numbers of progenitor chromosomes in natural A. suecica, but one pair of A. thaliana NORs and one pair of A. arenosa-derived 5S gene loci are missing. Similarly, in newly formed synthetic A. suecica-like allotetraploids, pairs of A. thaliana NORs are gained de novo, lost, and͞or transposed to A. arenosa chromosomes, with genotypic differences apparent between F 3 siblings of the same F2 parent and between independent lines. Likewise, pairs of A. arenosa 5S genes are lost and novel linkages between 5S loci and NORs arise in synthetic allotetraploids. By contrast, the expected numbers of A. arenosa-derived NORs and A. thaliana-derived 5S loci are found in both natural and synthetic A. suecica. Collectively, these observations suggest that some, but not all, loci are unstable in newly formed A. suecica allotetraploids and can participate in a variety of alternative rearrangements, some of which resemble chromosomal changes found in nature.plant ͉ polyploidy ͉ speciation ͉ translocation
In genetic hybrids, the silencing of nucleolar rRNA genes inherited from one progenitor is the epigenetic phenomenon known as nucleolar dominance. An RNAi knockdown screen identified the Arabidopsis de novo cytosine methyltransferase, DRM2 and the methylcytosine binding domain proteins, MBD6 and MBD10 as activities required for nucleolar dominance. MBD10 localizes throughout the nucleus, but MBD6 preferentially associates with silenced rRNA genes, and does so in a DRM2-dependent manner. DRM2 methylation is thought to be guided by siRNAs whose biogenesis requires RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Consistent with this hypothesis, knockdown of DCL3 or RDR2 disrupts nucleolar dominance. In genetic hybrids, the silencing of nucleolar rRNA genes inherited from one progenitor is the epigenetic phenomenon known as nucleolar dominance. An RNAi knockdown screen identified the Arabidopsis de novo cytosine methyltransferase, DRM2 and the methylcytosine binding domain proteins, MBD6 and MBD10 as activities required for nucleolar dominance. MBD10 localizes throughout the nucleus, but MBD6 preferentially associates with silenced rRNA genes, and does so in a DRM2-dependent manner. DRM2 methylation is thought to be guided by siRNAs whose biogenesis requires RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3). Consistent with this hypothesis, knockdown of DCL3 or RDR2 disrupts nucleolar dominance. Collectively, these results indicate that in addition to directing the silencing of retrotransposons and noncoding repeats, siRNAs specify de novo cytosine methylation patterns that are recognized by MBD6 and MBD10 in the large-scale silencing of rRNA gene loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.